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Offline vs. online

Databases assume that the entirety of datasets are available offline

This is not always true – sometimes data is only online:

• Twitter status updates, queries on search engines
• data from sensor networks
• telephone calls
• IP packets on the Internet
• high-speed trading data
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Data Stream Characteristics

Input rate is controlled externally – so the data processor has no
control over the speed of the data

Data streams are:

• infinite – one does not know the size of the data
• non-stationary – the distributions of the data can change

(seasonally, daily, hourly)

Model: infinite sequence of items S = (i1, i2, . . . , ik . . . )
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Stream Processing Model

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Objective: asking queries on the stream – standing and ad-hoc

Restrictions: storage space and processing time – have to process it
or we lose it forever!
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Implementation Issues

If we had enough memory / time – data streams would be easy

With restrictions:

• more efficient to get approximate answers
• use space-saving techniques such as hashing
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Problems Studied

• Sample data from a stream
• Filtering items
• Counting distinct elements
• Estimating moments
• Queries over sliding windows
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Sampling Problem

Objective: keeping a representative sample of the items in the
stream – to deal with the limited space issues

Sub-problems:

• sample a fixed proportion of elements
• keep a sample of fixed size
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Sampling a Fixed Proportion of Elements

Objective keep a proportion p of items in a stream

First solution:

• say, e.g., we want to keep 1 in 10 elements
• for each item, we can generate a random number from 0 to 9
• keep the item only we generate 0
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Motivating example

Stream: tuples of (user,query, time) – queries of users on a search
engine

Problem: how often does an user run the same query – what fraction
of queries are duplicates
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Motivating example

Issue of the above solution (assume we have space for 10% of the
stream):

• suppose a queries are only once, b queries are double, total
a+ 2b – corect answer is b/(a+ b)

• prob. we see the singleton queries a/10
• prob. we see a double query twice b/100 = b× 1/10 × 1/10
• prob. we see a double query only once

18b/100 = (1/10 × 9/10 + 9/10 × 1/10)b
• hence our wrong estimation is

b
10a+ 19b
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A Better Solution

It is better to sample the users, instead of the queries – so we sample
all the queries of a proportion of the users

• this can be done by hashing strings to integers

Takeaway: one has to be careful what sample one keeps, depending
on the applications
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Fixed-Size Samples

Assume we have to keep a sample of exactly s items – i.e., max space
in memory

Objective: each item in the stream S should be in the s with equal
probability – after n items prob. should be s/n
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Reservoir Sampling

Reservoir Sampling Algorithm [Vitter, 1985]

1. store first s elements in the stream in the sample
2. when element n arrives (n > s)

• with probability s/n keep the element, else discard
• if the element is kept, it replace one element in the sample

(chosen randomly)
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Reservoir Sampling – Proof

Claim the algorithm maintains a sample s with the desired property –
each item is in s with probability s/n

Proof (induction):

• base case: first s elements are in the sample with probability
s/s = 1

• inductive hypothesis: after n elements, the sample contains each
element with prob. s/n
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Reservoir Sampling – Proof

Claim the algorithm maintains a sample s with the desired property –
each item is in s with probability s/n

Proof (induction):

• inductive step: element n+ 1 arrives
• probability that it is kept in s is(

1 − s
n+ 1

)
+

s
n+ 1 · s− 1

s =
n

n+ 1

• at time n tuples are in the sample with prob. s/n, and are kept
with probability n/n+ 1

• so the probability that they “survive” in the sample at time n+ 1 is

s
n · n

n+ 1 =
s

n+ 1
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Filtering Streams

Problem: we want to let only some items in the stream, but we do not
have the space to store the keys for comparison

Motivating example – e-mail filtering

• large numbers of emails come every minute, a few of them are
spam

• we cannot keep the list of good emails in main memory (to
compare), but we still want to keep only non-spam emails

• solution: hashing
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Using Hashing to Filter Items

1. Set of item keys I that we want to keep / filter
2. Keep a bit array B of n bits, initialized to 0
3. Choose a hash function h with range [0,n), and hash each i ∈ I to

one of the n buckets; i.e., set B[h(i)] = 1

Process: for each item s in the stream S, output it only if B[h(s)] = 1
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Using Hashing to Filter Items

No false negatives, but some false positives

• some spam emails might still get through

FilterItem

0010001011000

Output the item since it may be in I.
Item hashes to a bucket that at least 
one of the items in I hashed to.

Hash 
func h

Drop the item.
It hashes to a bucket set 
to 0 so it is surely not in I.

Bit array B
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Probability of False Positives

A good hash function – each item in the stream S is equally likely to
hash to one of the n buckets

Assume m unique items (e.g., e-mails addresses)

What is the probability that a spam email hashes to a good email bit?

• equivalent: throwing m darts at n target – what is the probability
that a target gets at least one dart?
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Probability of False Positives

(1 – 1/n)

Probability some
target X not hit

by a dart

m

1 -

Probability at
least one dart
hits target X

n( / n)

Equivalent
Equals 1/e
as n ®∞

1 – e–m/n

Fraction of 1 in the array B is Probability of false positives 1 − e−m/n
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Example

|I| – 1 billion email addresses (darts)

|B| – 1GB = 8 billion bits (targets)

False positive rate: 1 − e−1/8 = 0.1175

• 11% of the spam email passes through

Can we do better?
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Bloom Filters [Bloom, 1970]

Structure:

• an array B of n bits, set to 0
• a collection of hash function h1,h2, . . . ,hk each mapping to the

same n buckets
• set I of keys of item

Initialization:

• take each key i ∈ I and hash it using each hj; set to 1 each bit in B
that has hj(i) = 1

Function:

• for each item s from the stream, check that h1(s),h2(s), . . . ,hk(s)
all map to 1 in B; discard it otherwise
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Bloom Filter Analysis

Equivalent: throwing km darts at n targets; fraction of 1 is

1 − e
−km
n

We have k independent hash functions; elements s only passes if all
k hash to a bucket of 1

False Positive Probability (
1 − e−

km
n

)k
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Bloom Filter Analysis

The false positive probability changes with the number k of hash
functions!

Optimal Number of Hash Functions

k =
n
m ln 2
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Bloom Filters – Takeaways

Can optimize the space taken, while having no false negatives and
minimizing false positives

Can be implemented efficiently – parallel hash functions

Can divide B in k parts – equivalent but simpler to keep one bit array
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