université **PARIS-SACLAY**

Algorithms for Data Science Data Streams II

Slides provided by: **Silviu Maniu**, Presented by: **Pierre-Henri Paris** October 3rd, 2024

M2 Data Science

[Data Streams](#page-1-0)

[Counting Distinct Elements](#page-6-0)

[Estimating Moments in Streams](#page-13-0)

[Queries over Sliding Windows](#page-23-0)

Input rate is **controlled externally** – so the data processor has no control over the speed of the data

Data streams are:

- \cdot infinite one does not know the size of the data
- non-stationary the distributions of the data can change (seasonally, daily, hourly)

Model: infinite sequence of items $S = (i_1, i_2, \ldots, i_k \ldots)$

Stream Processing Model

Objective: asking queries on the stream – *standing* and *ad-hoc*

Restrictions: storage space and processing time – have to process it or we lose it forever!

If we had enough memory / time – data streams would be easy

With restrictions:

- more efficient to get **approximate** answers
- \cdot use space-saving techniques such as **hashing**
- Sample data from a stream
- Filtering items
- Counting distinct elements
- Estimating moments
- Queries over sliding windows

[Data Streams](#page-1-0)

[Counting Distinct Elements](#page-6-0)

[Estimating Moments in Streams](#page-13-0)

[Queries over Sliding Windows](#page-23-0)

Problem: count the number of **distinct items** in a data stream

Applications:

- how many different words are in webpages (spam detection)?
- how many distinct products are sold in the last week?
- how many new stars do we find in space?

Naïve Approach keep a set of new items found and keep a count of its size

What if we do not have enough space for all the distinct elements?

- we still want an unbiased estimator of the counts
- we accept some error in the estimation as trade-off for space

Algorithm – assume we have *N* items in the universe:

- 1. pick a hash function h mapping the N items to at least log₂ N bits
- 2. for each stream item *s*, *r*(*s*) is the number of trailing 0s in the bit representation
	- \cdot for instance assume $h(s) = 12$, bit representation **1100**
	- \cdot $r(a)$ is then equal to 2
- 3. keep $R = \max_{s} r(s)$ over the entire stream

Estimator: the number of distinct items seems thus far is 2 *R* .

Assumption: *h* hashes with equal probability to all *N* values, the values from the stream come uniformly

 $h(s)$ is a **sequence of** $log₂$ *N* bits:

- \cdot a proportion of 2^{-1} (50%) will have $r(s) = 1$
- \cdot a proportion of 2^{-2} (25%) will have $r(s) = 2$
- generally, a proportion of 2 [−]*^r* will have *r* trailing 0s

For an **uniform hash function**, it takes thus $1/2^{-r} = 2^r$ items before we see one with *r* trailing 0s

Note: it can be done with trailing 1s, or any other bit function allowing us to compute the probability

Main drawback: the expectation E[2 *R*] can get very high

Can fix by using multiple estimators – *m* different hash functions

- \cdot taking the **average** can overestimate if one estimator is an outlier
- \cdot taking the **median** is better but it is always a power of **2**
- **best approach**: hybrid, divide the hash functions in groups, compute average in each group, take the median over groups

Minimizes space used

- only have to keep *R* for each hash function
- we can use as many hash functions as memory permits
- \cdot time trade-off: if too many computing the hashes (and maintaining averages, medians) can be too time costly

[Data Streams](#page-1-0)

[Counting Distinct Elements](#page-6-0)

[Estimating Moments in Streams](#page-13-0)

[Queries over Sliding Windows](#page-23-0)

Assume we have a sequence/stream *S* having *N* possible distinct (ordered) values, and *mⁱ* is the number of times the *i*th distinct element appears in *S*

Moment: the *n*th moment of a sequence *S* is equal to

$$
\sum_{i\in S}(m_i)^n.
$$

Example of moments:

- 1. 0th moment: the number of distinct items in the stream can be estimated using the approach presented before!
- 2. 1st moment: the length of the stream easy to keep count of
- 3. 2nd moment: surprise number how uneven the distribution is

Challenge: same as distinct items in stream – cannot keep all values in memory

5 distinct elements not varying much: 5 4 4 4 3

• 2nd moment (surprise number): $1^2 + 3^2 + 1^2 = 11$

5 distinct elements with outliers: 16 1 1 1 1

• 2nd moment (surprise number): $1^2 + 4^2 = 17$

Assume a stream has a length *n*, and we have space to store a few variables and not all *mⁱ*

We keep some variables *X*:

- *X*.val the value of the element
- *X*.c the count of that element in the stream

Alon-Matias-Szegedy Algorithm (AMS):

- 1. choose a number *i* between 1 and *n*
- 2. when the stream S reaches *i*, set X val $=$ s_{*i*} and X $c = 1$
- 3. everytime the value in *X*.val is encountered in *S*, increment *X*.c

Estimate of the 2nd moment is:

$$
n(2X.C-1)
$$

The estimate can be refined by using *k* different *X* variables; the estimate is then the **average** of the estimates:

$$
\frac{n}{k}\sum_{i\in\{1,\ldots,k\}}(2X_i.c-1)
$$

Stream $(n = 15)$:

a b c b d a c d a b d c a a b

• surprise number $5^2 + 4^2 + 3^2 + 3^2 = 59$

Keep X_1, X_2, X_3 , and choose 3, 8, 13 as random positions in the stream:

- \cdot X_1 val $=$ **c**, and $-$ at the end of the stream $-X_1$ $c=$ 3
- \cdot *X*₂.val = *d*, and at the end of the stream *X*₂.c = 2
- \cdot X_3 .val = a , and at the end of the stream $-X_3$.c = 2

The final estimate is:

$$
15/3 \times ((2 \times 3 - 1) + (2 \times 2 - 1) + (2 \times 2 - 1)) = 55
$$

Let us write $f(X) = n(2c - 1)$, and c_t the number of times an item appears from time *t* on

We need to give a bound on the expectation of *f*:

$$
E[f(X)] = \frac{1}{n} \sum_{t=1}^{n} n(2c_t - 1) = \sum_{i=1}^{m_i} (2i - 1)
$$

$$
= 2 \frac{m_i(m_i + 1)}{2} - m_i = (m_i)^2
$$

– in expectation, the formula is exactly the second moment!

The algorithm works for any moment *k*, but the estimate changes

General estimator

$$
n\left(c^k-(c-1)^k\right)
$$

What happends when we do not know *n*?

• assume we can only hold *k* functions

We can use **Reservoir Sampling**

- choose the first *k* times for *k* variables
- \cdot for $n > k$ choose the item as a new variable with probability k/n . if chosen discard one of the previous *k* randomly
- in the estimator, use the current length of the stream as *n*

[Data Streams](#page-1-0)

[Counting Distinct Elements](#page-6-0)

[Estimating Moments in Streams](#page-13-0)

[Queries over Sliding Windows](#page-23-0)

Setting: sometimes we only need to query the last *N* elements of a stream – queries over a sliding window

- *N* can be very large
- there can also be multiple stream, so keeping multiple windows is too much

Example: transactions (product was sold, ad was clicked, etc.)

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Problem: given a stream *S* of 0 and 1, we want to answer queries of the form

 \cdot how many 1s are in the last *k* bits ($k \le N$)

Assumption: we cannot afford to keep the most recent *N* bits

- but, impossible to get an exact answer without storing the entire window
- have to settle for approximate answers

In **uniform streams**, we can simply estimate the number of 1s by counting the number of 1s as *a*, 0s as *b* and estimate as

$$
N\frac{a}{a+b}
$$

But streams are not uniform!

Main Idea – exponential windows

- summarize regions of the streams in buckets, that are exponentially increasing
- keep the count for each

The advantages:

- only needs $\mathcal{O}(\log^2 N)$ bits $\mathcal{O}(\log N)$ counts of log₂ N bits
- easy updates
- \cdot error in count not greater than the number of 1 in the "last" area
- \cdot if 1s are (relatively) evenly distributed, error is no more than 50%

The big disadvantage:

• if all the 1s are in the unknown area – error is unbounded!

Main idea: instead of keeping fixed sizes of buckets, keep buckets containing a fixed size of 1s

 \cdot the windows increase exponentially – numbers of 1 kept as powers of 2, e.g., 1 1 2 4 16

Buckets contain:

- the timestamp of its end kept as timestamp modulo *N*, needs O(log *N*) bits
- \cdot the number of 1s in it since powers of 2 always, it only needs O(log log *N*)

1001010110001011010101010101011010101010101110101010111010100010110010 *N*

- at most one or two buckets of the same size
- no overlap of timestamps
- new buckets are smaller than earlier ones
- buckets are removed when end time > *N*

When a new item (bit) comes, drop the last bucket if end-time after *N*

Update depends on the bit $(o \text{ or } 1)$:

- 1. if bit is o no changes needed
- 2 if hit is 1:
	- create a new bucket of size 1
	- \cdot if 3 buckets of size 1, combine oldest two in a new bucket of size 2
	- recurse on sizes

Current state of the stream:

1001010110001011010101010101011010101010101110101010111010100010110010

Bit of value 1 arrives

001010110001011010101010101011010101010101110101010111010100010110010**1**

Two orange buckets get merged into a yellow bucket

0010101100010110101010101010110101010101011101010101110101000101100101

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

0101100010110101010101010110101010101011101010101110101000101100101**101**

Buckets get merged…

0101100010110101010101010110101010101011101010101110101000101100101**101**

State of the buckets after merging

0101100010110101010101010110101010101011101010101110101000101100101101

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Query:

- 1. sum the sizes of all buckets except the last
- 2. add half the size of the last (we do not know the proportion of the last window in *N*)

Error is at most 50%:

- can be reduced by maintaining *r* or *r* − 1 buckets of each size
- \cdot error is then at most $\mathcal{O}(1/r)$
- \cdot trade-off between number of bits and the error

Using *k* < *N* as a query parameter:

- want to query only the last *k* bits in the window *N*
- can simply "cut" at *k* and use the same estimator

Sum of last *k* integer elements:

- assume integers have at most *m* bits
- treat each bit as a separate stream and count the 1 in last *k*
- \cdot estimate as $\sum_{i=0}^{m-1} c_i 2^i$ where c_i is the DGIM estimator for bit i

The contents follows Chapter 4 of [**?**]. Figures in slides 4, 21, 26, 29, 32, and 34 are taken from <https://www.mmds.org/>

References i