
Algorithms for Data Science
Data Streams II

Slides provided by: Silviu Maniu, Presented by: Pierre-Henri Paris
October 3rd, 2024

M2 Data Science

1/36

Table of contents

Data Streams

Counting Distinct Elements

Estimating Moments in Streams

Queries over Sliding Windows

2/36

Data Streams

Input rate is controlled externally – so the data processor has no
control over the speed of the data

Data streams are:

• infinite – one does not know the size of the data
• non-stationary – the distributions of the data can change

(seasonally, daily, hourly)

Model: infinite sequence of items S = (i1, i2, . . . , ik . . .)

3/36

Stream Processing Model

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Processor

Limited
Working
Storage

. . . 1, 5, 2, 7, 0, 9, 3

. . . a, r, v, t, y, h, b

. . . 0, 0, 1, 0, 1, 1, 0
time

Streams Entering.
Each is stream is

composed of
elements/tuples

Ad-Hoc
Queries

Output

Archival
Storage

Standing
Queries

Objective: asking queries on the stream – standing and ad-hoc

Restrictions: storage space and processing time – have to process it
or we lose it forever!

4/36

Implementation Issues

If we had enough memory / time – data streams would be easy

With restrictions:

• more efficient to get approximate answers
• use space-saving techniques such as hashing

5/36

Problems Studied

• Sample data from a stream
• Filtering items
• Counting distinct elements
• Estimating moments
• Queries over sliding windows

6/36

Table of contents

Data Streams

Counting Distinct Elements

Estimating Moments in Streams

Queries over Sliding Windows

7/36

Count-Distinct Problem

Problem: count the number of distinct items in a data stream

Applications:

• how many different words are in webpages (spam detection)?
• how many distinct products are sold in the last week?
• how many new stars do we find in space?

8/36

Count-Distinct Problem

Naïve Approach keep a set of new items found and keep a count of
its size

What if we do not have enough space for all the distinct elements?

• we still want an unbiased estimator of the counts
• we accept some error in the estimation as trade-off for space

9/36

Flajolet-Martin Approach [?]

Algorithm – assume we have N items in the universe:

1. pick a hash function h mapping the N items to at least log2 N bits
2. for each stream item s, r(s) is the number of trailing 0s in the bit

representation
• for instance assume h(s) = 12, bit representation 1100
• r(a) is then equal to 2

3. keep R = maxs r(s) over the entire stream

Estimator: the number of distinct items seems thus far is 2R.

10/36

Intuition on Why It Works

Assumption: h hashes with equal probability to all N values, the
values from the stream come uniformly

h(s) is a sequence of log2 N bits:

• a proportion of 2−1 (50%) will have r(s) = 1
• a proportion of 2−2 (25%) will have r(s) = 2
• generally, a proportion of 2−r will have r trailing 0s

For an uniform hash function, it takes thus 1/2−r = 2r items before
we see one with r trailing 0s

Note: it can be done with trailing 1s, or any other bit function allowing
us to compute the probability

11/36

Drawbacks and Optimization

Main drawback: the expectation E[2R] can get very high

Can fix by using multiple estimators – m different hash functions

• taking the average can overestimate – if one estimator is an
outlier

• taking the median is better – but it is always a power of 2
• best approach: hybrid, divide the hash functions in groups,

compute average in each group, take the median over groups

12/36

Space Cost

Minimizes space used

• only have to keep R for each hash function
• we can use as many hash functions as memory permits
• time trade-off: if too many – computing the hashes (and

maintaining averages, medians) can be too time costly

13/36

Table of contents

Data Streams

Counting Distinct Elements

Estimating Moments in Streams

Queries over Sliding Windows

14/36

Moments of a Sequence

Assume we have a sequence/stream S having N possible distinct
(ordered) values, and mi is the number of times the ith distinct
element appears in S

Moment: the nth moment of a sequence S is equal to∑
i∈S

(mi)
n.

15/36

Moments of a Sequence

Example of moments:

1. 0th moment: the number of distinct items in the stream – can be
estimated using the approach presented before!

2. 1st moment: the length of the stream – easy to keep count of
3. 2nd moment: surprise number – how uneven the distribution is

Challenge: same as distinct items in stream – cannot keep all values
in memory

16/36

Surprise Number

5 distinct elements not varying much: 5 4 4 4 3

• 2nd moment (surprise number): 12 + 32 + 12 = 11

5 distinct elements with outliers: 16 1 1 1 1

• 2nd moment (surprise number): 12 + 42 = 17

17/36

Alon-Matias-Szegedy Algorithm [?]

Assume a stream has a length n, and we have space to store a few
variables and not all mi

We keep some variables X:

• X.val – the value of the element
• X.c – the count of that element in the stream

Alon-Matias-Szegedy Algorithm (AMS):

1. choose a number i between 1 and n
2. when the stream S reaches i, set X.val = si and X.c = 1
3. everytime the value in X.val is encountered in S, increment X.c

18/36

Using AMS for Estimating 2nd Moment

Estimate of the 2nd moment is:

n(2X.c − 1)

The estimate can be refined by using k different X variables; the
estimate is then the average of the estimates:

n
k

∑
i∈{1,...,k}

(2Xi.c − 1)

19/36

AMS example

Stream (n = 15):

a b c b d a c d a b d c a a b

• surprise number 52 + 42 + 32 + 32 = 59

Keep X1, X2, X3, and choose 3, 8, 13 as random positions in the stream:

• X1.val = c, and – at the end of the stream – X1.c = 3
• X2.val = d, and – at the end of the stream – X2.c = 2
• X3.val = a, and – at the end of the stream – X3.c = 2

The final estimate is:
15/3 × ((2 × 3 − 1) + (2 × 2 − 1) + (2 × 2 − 1)) = 55

20/36

Why It Works

a a a a

1 32 ma

b b b b

Count:

Stream:

Let us write f (X) = n(2c− 1), and ct the number of times an item
appears from time t on
We need to give a bound on the expectation of f :

E[f (X)] = 1
n

n∑
t=1

n(2ct − 1) =
mi∑
i=1

(2i− 1)

= 2mi(mi + 1)
2 −mi = (mi)

2

– in expectation, the formula is exactly the second moment!

21/36

Estimating Higher Order Moments

The algorithm works for any moment k, but the estimate changes

General estimator
n
(
ck − (c− 1)k

)

22/36

Infinite Streams

What happends when we do not know n?

• assume we can only hold k functions

We can use Reservoir Sampling

• choose the first k times for k variables
• for n > k choose the item as a new variable with probability k/n,

if chosen discard one of the previous k randomly
• in the estimator, use the current length of the stream as n

23/36

Table of contents

Data Streams

Counting Distinct Elements

Estimating Moments in Streams

Queries over Sliding Windows

24/36

Setting: sometimes we only need to query the last N elements of a
stream – queries over a sliding window

• N can be very large
• there can also be multiple stream, so keeping multiple windows

is too much

Example: transactions (product was sold, ad was clicked, etc.)

25/36

Sliding Windows

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

Past Future

26/36

Counting Bits

Problem: given a stream S of 0 and 1, we want to answer queries of
the form

• how many 1s are in the last k bits (k ⩽ N)

Assumption: we cannot afford to keep the most recent N bits

• but, impossible to get an exact answer without storing the entire
window

• have to settle for approximate answers

27/36

Non-Uniform Streams

In uniform streams, we can simply estimate the number of 1s by
counting the number of 1s as a, 0s as b and estimate as

N a
a+ b

But streams are not uniform!

28/36

Datar-Gionis-Indyk-Motwani (DGIM) Method [?]

Main Idea – exponential windows

• summarize regions of the streams in buckets, that are
exponentially increasing

• keep the count for each

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0
N

?

01
12

23
4

106

We can reconstruct the count of the last N bits, except we
are not sure how many of the last 6 1s are included in the N

Window of
width 16
has 6 1s

29/36

Pros and Cons

The advantages:

• only needs O(log2 N) bits – O(logN) counts of log2 N bits
• easy updates
• error in count not greater than the number of 1 in the “last” area
• if 1s are (relatively) evenly distributed, error is no more than 50%

The big disadvantage:

• if all the 1s are in the unknown area – error is unbounded!

30/36

The DGIM Fix

Main idea: instead of keeping fixed sizes of buckets, keep buckets
containing a fixed size of 1s

• the windows increase exponentially – numbers of 1 kept as
powers of 2, e.g., 1 1 2 4 16

Buckets contain:

• the timestamp of its end – kept as timestamp modulo N, needs
O(logN) bits

• the number of 1s in it – since powers of 2 always, it only needs
O(log logN)

31/36

Restrictions on Buckets

1001010110001011010101010101011010101010101110101010111010100010110010
N

• at most one or two buckets of the same size
• no overlap of timestamps
• new buckets are smaller than earlier ones
• buckets are removed when end time > N

32/36

Updating Buckets

When a new item (bit) comes, drop the last bucket if end-time after N

Update depends on the bit (0 or 1):

1. if bit is 0 – no changes needed
2. if bit is 1:

• create a new bucket of size 1
• if 3 buckets of size 1, combine oldest two in a new bucket of size 2
• recurse on sizes

33/36

Updating Buckets

1001010110001011010101010101011010101010101110101010111010100010110010

0010101100010110101010101010110101010101011101010101110101000101100101

0010101100010110101010101010110101010101011101010101110101000101100101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Current state of the stream:

Bit of value 1 arrives

Two orange buckets get merged into a yellow bucket

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

Buckets get merged…

State of the buckets after merging

34/36

Querying

Query:

1. sum the sizes of all buckets except the last
2. add half the size of the last (we do not know the proportion of

the last window in N)

Error is at most 50%:

• can be reduced by maintaining r or r − 1 buckets of each size
• error is then at most O(1/r)
• trade-off between number of bits and the error

35/36

Extensions

Using k < N as a query parameter:

• want to query only the last k bits in the window N
• can simply “cut” at k and use the same estimator

Sum of last k integer elements:

• assume integers have at most m bits
• treat each bit as a separate stream and count the 1 in last k
• estimate as

∑m−1
i=0 ci2i where ci is the DGIM estimator for bit i

36/36

Acknowledgments

The contents follows Chapter 4 of [?]. Figures in slides 4, 21, 26, 29, 32,
and 34 are taken from https://www.mmds.org/

https://www.mmds.org/

References i

	Data Streams
	Counting Distinct Elements
	Estimating Moments in Streams
	Queries over Sliding Windows
	Appendix

