
Algorithms for Data Science
Item Recommendation

Silviu Maniu
October 7th, 2022

M2 Data Science

1/24

Table of contents

Recommendations

Content-based Recommendation

Collaborative Filtering

2/24

Recommendations in the Web age

Traditionally: Shelf space, newspaper ads, etc. (scarcity)

Now: Almost zero cost of information about products (user
behaviour)

• abundance of choice
• more niche preferences → better filter → better

recommendation engines

3/24

Types of Recommendations

Editorial / hand curated

• favourites, bookmarks
• curated lists

Simple aggregates

• top 10 lists
• “most popular”, “recent”

Personalized

• Netflix, Spotify, etc.

4/24

Formal Model

Set of customers X, set of items S

Utility function / matrix u : X × S→ R

• R totally ordered set of ratings (0 − 5 stars, grades, percentages)

u film1 film 2 film3 film4

cust1 0.9 0.3
cust2 0.75 0.4
cust3 0.1 1
cust4 0.4

5/24

Challenges

Gathering ratings for the utility:

• explicit: ask people to rate
• implicit: learn from user actions (but issues with low ratings)

Extrapolate unknown ratings

• u is sparse (most people don’t rate everything)
• cold start issues

6/24

Approaches

Three main approaches:

• content-based
• collaborative filtering
• latent factors (not covered)

7/24

Table of contents

Recommendations

Content-based Recommendation

Collaborative Filtering

8/24

Content-based Recommendations

Principle – recommend items to an user that are similar to other
items highly rated by them

Applications

• books, movies, music: same actors/artists, same genre, etc.
• products: recommend other products that have the same

characteristics

Main “workflow”:

• aggregate item profiles → aggregate user profile → match other
items

9/24

Item profiles

Item profile for each item – set or vector of features

• important words in document
• “one-hot” encoding of authors, titles, actors, . . .
• embeddings

Similar to the information retrieval setting

• features that are present in fewer items are more important
• combine feature frequency with inverse document frequency

10/24

TF-IDF

Term Frequency – Inverse Document Frequency: heuristic from text
mining

• in our case term is feature, document is item

Frequency of feature i in item j, fij

TFij =
fij

maxk fkj

Inverse frequency of feature i, ni in total items N

IDFi = log
N
ni

11/24

Item Profile

TF-IDF score for every pair of feature-item

wij = TFij × IDFi

Item profile: set of features having highest tf-idf scores

12/24

User Profile

User profile – aggregation of item profile attached to an user

• weighted average, difference from average, etc.

13/24

Recommendation

Prediction for user x and item i (cosine similarity)

s(x, i) = cos
⟨x, i⟩

∥x∥ ∥i∥

• recommend top-k items by s scores
• recommend items above a similarity threshold

14/24

Pros and Cons

Pros

• not reliant on other users
• can predict to niche users, can predict new items
• can provide explanations

Cons

• finding the good features is hard
• hard to recommend to new users
• cannot recommend items outside user’s content profile

15/24

Table of contents

Recommendations

Content-based Recommendation

Collaborative Filtering

16/24

Collaborative Filtering

Given an user x

• find a set of N other users having similar ratings
• “fill” x’s rating based on the ratings of the other users

User-user collaborative filtering

17/24

Finding Similar Users

Vector rx, ry of user ratings

rx =
(

1 _ _ 1 3
)

ry =
(

1 _ 2 2 _
)

Jaccard similarity

• consider the vector as set of item rated; grades are ignored
• sim(x, y) = |{1,4,5}∩{1,3,4}|

|{1,4,5}∪{1,3,4}| = 0.5

Cosine similarity

• measures the “angle” between vectors as similarity, 0 means
complete de-correlation, −1 complete dissimilarity, 1 similarity

• assumes missing ratings are bad ratings
• sim(x, y) = ⟨rx,ry⟩

∥rx∥·∥ry∥ ≈ 0.3

Others: Pearson correlation coefficient, . . .
18/24

Predicting Ratings

rx user x ratings, N set of k most similar users

Predicting missing ratings of an item i:

• rxi =
∑

y∈N ryi
k (average)

• rxi =
∑

y∈N sim(x,y)·ryi∑
y∈N sim(x,y) (weighted average)

• not the only choices!

19/24

Item-Item Collaborative Filtering

Item-item view:

• for item i, find other similar items (similarity=same ratings by
users)

• estimate rating for i based on ratings of similar items, N(i; x) set
of items rated by x similar to i

• can use same similarity metrics and prediction functions

rxi =
∑

j∈N(i;x) sim(i, j) · rxj∑
j∈N(i;x) sim(i, j)

20/24

In Practice

The score is taken as compared to the average scores in the data

• µ overall item rating, bx, bi - average rating deviation from µ

• baseline estimator for rxi = µ+ bx + by

rxi = bxi +
∑

j∈N(i;x) sim(i, j)(rxj − bxj)∑
j∈N(i;x) sim(i, j)

Hybrid methods

• combine different Recommenders
• combine content-based approach into item-item CF

21/24

Pros and Cons

Pros

• no feature selection needed; only ratings are sufficient

Cons

• cold start problem: needs enough users/items
• sparsity problem: hard to find users having rated same item
• popularity: unique tastes have sparsity problem; tens to

recommend popular items

22/24

Evaluation

Train-test:

• remove a subset of ratings from a subset of users (same items)
• try to “guess” them

Measures:

• root mean square error =
√∑

xi(rxi − r∗xi)2

• precision at k (p@k): percent in top-k
• Spearman rank correlation between ideal and user’s rankings
• 0-1 model: number of items for which prediction can be made

(coverage), predicting rating not too far from ideal (precision),
can use concept of false positive/negative

23/24

Computation Issues

Number of items I, number of users U

Finding k most similar items O(kUI) – too expensive!

• need to pre-compute for all users if possible

How?

• locality sensitive hashing
• clustering
• dimensionality reduction

24/24

Acknowledgments

The contents follows Chapter 9 of [Leskovec et al., 2020].

References i

Leskovec, J., Rajaraman, A., and Ullman, J. (2020).
Mining of Massive Datasets.
Cambridge University Press.

	Recommendations
	Content-based Recommendation
	Collaborative Filtering
	Appendix

