
DATA WAREHOUSE I
WEEK 1

© 2024 Pierre-Henri Paris
This work is licensed under CC BY

4.0

 
1

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0

INTRODUCTION

2

COURSE OVERVIEW
Course Objectives

Understand the fundamentals of data
warehousing
Learn about data warehouse architecture and
design
Explore ETL processes and data modeling
Gain hands-on experience with open-source DW
tools

3

COURSE OVERVIEW
Course Structure

7 weeks of lectures and labs
Weekly quizzes and in-class exercises
Final exam in Week 8

4

IMPORTANCE OF DATA WAREHOUSING
Enabling informed decision-making

5

Data Warehousing allows businesses to consolidate their data from various sources into a single, consistent store. This
not only ensures higher data quality and consistency but also enables historical analysis and supports complex queries
that operational databases are not optimized for. This is critical for businesses that rely on deep analytics to drive
decision-making, offering a consolidated view of performance over time. For instance, sales trends over multiple years
or customer behavior analysis are best handled through a data warehouse, which can efficiently manage and retrieve
such insights.

Speaker notes

IMPORTANCE OF DATA WAREHOUSING
Enabling informed decision-making
Consolidating data from multiple sources

5.1

IMPORTANCE OF DATA WAREHOUSING
Enabling informed decision-making
Consolidating data from multiple sources
Providing historical perspective on business
performance

5.2

IMPORTANCE OF DATA WAREHOUSING
Enabling informed decision-making
Consolidating data from multiple sources
Providing historical perspective on business
performance
Supporting complex queries and analytics

5.3

IMPORTANCE OF DATA WAREHOUSING
Enabling informed decision-making
Consolidating data from multiple sources
Providing historical perspective on business
performance
Supporting complex queries and analytics
Improving data quality and consistency

5.4

CHALLENGES FOR
DATABASES

6

THE DATA EXPLOSION
Volume: Exponential growth in data generation

 Facebook processes 500+ terabytes of data daily

7

The world is generating data at an unprecedented rate. It’s crucial to understand the "3 Vs" of Big Data: Volume, Variety,
and Velocity. Volume refers to the massive amounts of data created every second—think of platforms like Facebook
generating 500+ terabytes daily. Variety represents the different formats of data—structured like SQL tables, semi-
structured like JSON, or unstructured data like videos. Lastly, Velocity is about the speed at which data is generated and
the need for real-time processing, as seen with stock exchanges like NYSE that produce 1 TB of trade data every day.
The challenge is how to store, manage, and analyze such data efficiently, which is where Data Warehousing comes in.

Speaker notes

THE DATA EXPLOSION
Volume: Exponential growth in data generation

 Facebook processes 500+ terabytes of data daily

Variety: Structured, semi-structured, and
unstructured data

 Relational databases, JSON, text, images, videos

7.1

THE DATA EXPLOSION
Volume: Exponential growth in data generation

 Facebook processes 500+ terabytes of data daily

Variety: Structured, semi-structured, and
unstructured data

 Relational databases, JSON, text, images, videos

Velocity: Speed of data generation and processing
 NYSE generates 1 TB of trade data per day

7.2

NEED FOR REAL-TIME ANALYTICS
Businesses require up-to-the-minute insights

 Fraud detection in financial transactions

 Real-time inventory management in e-commerce

 Personalized recommendations in streaming services

8

Real-time analytics is becoming increasingly important in various industries. Fraud detection in financial services is a
perfect example of why businesses need instant access to fresh data. Delays in identifying fraudulent transactions could
cost companies millions. Similarly, e-commerce platforms rely on real-time data to manage inventory, ensuring stock
levels are updated as sales happen. In streaming services, real-time recommendations based on user behavior
enhance customer experience and keep viewers engaged. Real-time analytics requires data warehousing solutions that
can process and provide up-to-the-minute insights from large volumes of streaming data.

Speaker notes

DATA INTEGRATION CHALLENGES
Multiple data sources with different formats
Data silos in organizations
Ensuring data consistency across sources

 A multinational company integrating sales data from different
countries

9

1. Multiple data sources with different formats:
Challenge: Organizations often have data spread across various systems (e.g., CRM, ERP, HR systems)
in different formats (databases, spreadsheets, text files).
Impact: Makes it difficult to get a complete view of the business or perform cross-functional analysis.
Solution approach: ETL (Extract, Transform, Load) processes are used to consolidate and standardize
data.

2. Data silos in organizations:
Definition: Isolated pockets of data that are not easily accessible by other parts of the organization.
Causes: Often result from departmental systems, acquisitions, or legacy technology.
Problem: Leads to incomplete information for decision-making and potential data inconsistencies.
Solution: Data warehouses aim to break down these silos by integrating data from across the
organization.

3. Ensuring data consistency across sources:
Challenge: Different systems may represent the same data differently (e.g., date formats, customer IDs).
Importance: Inconsistent data can lead to incorrect analysis and poor decision-making.
Approach: Data governance policies and data quality processes are crucial in maintaining consistency.

4. Real-world example: A multinational company integrating sales data from different countries faces challenges like:
Different currencies and exchange rate fluctuations
Varying fiscal years and reporting standards
Multiple languages and cultural differences in data entry
Diverse local systems and data formats

5. Why this matters:
Effective data integration is foundational for accurate analytics and reporting.
It enables a holistic view of the organization, supporting better strategic decisions.
Addressing these challenges is a key part of building a successful data warehouse.

Think about a company you're familiar with (perhaps from a previous job or internship). What different types of data

Speaker notes

systems might they use, and what challenges might they face in integrating all their data?

DATA QUALITY AND CONSISTENCY
Common data quality issues:

Duplicates, missing values, inconsistent
formats

10

Poor data quality leads to incorrect analysis and flawed decision-making. Common issues include duplicate records,
missing values, and inconsistent formats across datasets. When multiple systems contribute data to a warehouse,
there’s a high risk of inconsistency if not properly managed. Data cleansing and validation are critical steps in any ETL
(Extract, Transform, Load) process. Before data is loaded into the warehouse, it needs to be checked and standardized
to ensure the accuracy and consistency of the results. Poor data quality not only affects decision-making but can also
lead to a loss of trust from customers if, for example, personalized recommendations are inaccurate.

Speaker notes

DATA QUALITY AND CONSISTENCY
Common data quality issues:

Duplicates, missing values, inconsistent
formats

Impact of poor data quality:
Incorrect analysis and decision-making
Loss of customer trust

10.1

DATA QUALITY AND CONSISTENCY
Common data quality issues:

Duplicates, missing values, inconsistent
formats

Impact of poor data quality:
Incorrect analysis and decision-making
Loss of customer trust

Importance of data cleansing and validation

10.2

SCALABILITY AND PERFORMANCE
Handling growing data volumes
Maintaining query performance as data size
increases
Balancing read and write operations

 Scaling challenges faced by social media platforms

11

As data grows, data warehouses must be designed to scale efficiently. Social media platforms, for instance, face
scalability challenges as they need to manage petabytes of user-generated content. A well-designed DW should
maintain query performance even as the data scales. One approach is partitioning, where large datasets are split into
smaller, more manageable segments, improving the performance of queries. Indexing and using columnar storage are
other techniques to enhance performance. Ensuring the warehouse scales to handle increasing read and write
operations is critical to maintaining a responsive system.

Speaker notes

SECURITY AND PRIVACY CONCERNS
Protecting sensitive data (e.g., personal
information, financial data)

12

Data security is one of the most important considerations for any data warehouse. Protecting sensitive data such as
personally identifiable information (PII) and financial records is crucial, particularly with stringent regulations like GDPR
in the EU or CCPA in California. These regulations enforce strict requirements for data protection, user consent, and the
right to be forgotten. Techniques like data masking, encryption, and access control ensure that only authorized
personnel can view or modify sensitive data. Furthermore, anonymization and pseudonymization techniques help
safeguard individual privacy while allowing businesses to perform analytics on the data.

Speaker notes

SECURITY AND PRIVACY CONCERNS
Protecting sensitive data (e.g., personal
information, financial data)
Compliance with regulations (e.g., GDPR, CCPA)

12.1

SECURITY AND PRIVACY CONCERNS
Protecting sensitive data (e.g., personal
information, financial data)
Compliance with regulations (e.g., GDPR, CCPA)
Balancing data accessibility with security

12.2

SECURITY AND PRIVACY CONCERNS
Protecting sensitive data (e.g., personal
information, financial data)
Compliance with regulations (e.g., GDPR, CCPA)
Balancing data accessibility with security
Challenges of data anonymization

12.3

BRIEF HISTORY OF
DATABASES

13

1960S - EARLY DATABASE SYSTEMS
Hierarchical Databases

Tree-like structure
Limitations: Inflexibility, data redundancy

 IBM's Information Management System (IMS)

14

Speaker notes

1. Context:
1960s: Computers were just beginning to be used for business data processing.
Challenge: How to efficiently store and retrieve large amounts of data.

2. Hierarchical Databases:
Structure: Tree-like, parent-child relationships.
Example: IBM's Information Management System (IMS)
How it works: Data is organized in a hierarchy, like an organizational chart.
Strengths: Efficient for certain types of relationships (e.g., parts in assemblies).
Limitations:

Difficulty representing many-to-many relationships.
Inflexible for changing business needs.
Complex querying for data not following the hierarchy.

3. Network Databases:
Structure: Based on the CODASYL model, allowing more complex relationships.
Example: Integrated Data Store (IDS)
Improvement over hierarchical: Could represent more complex relationships.
How it works: Uses records and sets to create network-like connections between data.
Limitations:

Still complex to manage and query.
Required detailed knowledge of the database structure to navigate data.

4. Legacy Impact:
Some of these systems (especially IMS) are still used today in certain industries (banking, insurance)
due to their reliability and the cost of migration.

5. Historical Significance:
These early systems laid the groundwork for future database development.
Their limitations directly influenced the development of the relational model in the 1970s.

Study Tip: Try to visualize how you would structure a simple dataset (e.g., employees in a company) using a hierarchical

model. Then, think about what kinds of questions would be easy or difficult to answer with this structure. This exercise
can help you understand why these models were eventually superseded.

1960S - EARLY DATABASE SYSTEMS
Hierarchical Databases

Tree-like structure
Limitations: Inflexibility, data redundancy

 IBM's Information Management System (IMS)

Network Databases

Based on the CODASYL model
Improvement over hierarchical, but still
complex

 Integrated Data Store (IDS)

14.1

1970S - RELATIONAL DATABASES AND
SQL

Introduction of the relational model by E.F. Codd
(1970)

15

Speaker notes

1. The Relational Model:
Introduced by E.F. Codd in 1970.
Core idea: Represent data in tables with rows and columns, using relationships between these tables.
Revolutionary because: It provided a more flexible and intuitive way to structure and query

2. Key Concepts:
Tables (Relations): Each table represents an entity or concept.
Rows (Tuples): Each row is a specific instance or record.
Columns (Attributes): Represent properties or characteristics of the entity.
Keys: Used to uniquely identify rows and establish relationships between tables.

3. Advantages over earlier models:
Flexibility: Easier to modify the database structure as business needs change.
Ad-hoc querying: Users can ask complex questions without needing to understand the physical data
storage.
Data independence: Changes to the physical storage don't affect the logical view of the data.

4. SQL (Structured Query Language):
Developed to interact with relational databases.
Standardized language for querying and managing relational databases.
Made databases accessible to a wider range of users, not just specialized programmers.

5. First Commercial RDBMS:
Oracle, founded in 1977, released its first commercial SQL-based RDBMS in 1979.
Other early players: IBM's System R (research project that influenced SQL development).

6. Impact:
Relational databases quickly became the dominant model for data management.
Concepts from the relational model still underpin much of modern data management, including in data
warehouses.

7. Modern relevance:
Most business applications today use relational databases.
SQL remains the standard language for database interaction, with various dialects for different systems.

Practice designing a simple relational database. For example, try to model a library system with books, authors, and
borrowers. Think about how you would structure the tables and relationships. This exercise will help you grasp the
fundamental concepts of relational database design.

1970S - RELATIONAL DATABASES AND
SQL

Introduction of the relational model by E.F. Codd
(1970)
Key concepts: Tables, rows, columns, keys

15.1

1970S - RELATIONAL DATABASES AND
SQL

Introduction of the relational model by E.F. Codd
(1970)
Key concepts: Tables, rows, columns, keys
Development of SQL (Structured Query Language)

15.2

1970S - RELATIONAL DATABASES AND
SQL

Introduction of the relational model by E.F. Codd
(1970)
Key concepts: Tables, rows, columns, keys
Development of SQL (Structured Query Language)
First commercial RDBMS: Oracle (1979)

15.3

1980S - OBJECT-ORIENTED DATABASES
Designed to handle complex data structures

16

Speaker notes

1. Object-Oriented Databases (OODBs) - 1980s:
1. Purpose:

Designed to handle complex data structures that were difficult to represent in relational
databases.
Aimed to bridge the gap between object-oriented programming and database management.

2. Key features:
Data stored as objects, mirroring object-oriented programming concepts.
Support for complex data types and relationships.
Ability to store and retrieve complete object structures.

3. Integration with object-oriented programming languages:
Allowed seamless interaction between databases and OOP languages like C++ and Java.
Reduced the "impedance mismatch" problem (the difficulty of translating between programming
objects and relational database structures).
Example: A Java object could be directly stored in and retrieved from the database without
needing to be decomposed into tables.

4. Examples of OODBs:
Versant: One of the early commercial OODBs, known for its performance.
ObjectStore: Another pioneering OODB, focused on scalability and integration with C++.
Other notable examples: Objectivity/DB, Db4o (database for objects)

5. Limited adoption compared to relational databases:
Despite initial enthusiasm, OODBs didn't become as widespread as expected.
Reasons for limited adoption:

Maturity and widespread use of relational databases
Complexity of object-oriented data modeling
Lack of standardization (each OODB had its own way of doing things)
Performance issues with complex queries
Limited support for ad-hoc querying compared to SQL

6. Legacy and influence:
While pure OODBs are not widely used, their concepts influenced:

Object-relational databases (e.g., PostgreSQL with its object-relational features)
NoSQL databases, particularly document databases

Some niche applications in fields like computer-aided design (CAD) and scientific databases
still use OODBs

2. Why this is important to understand:
Shows the evolution of database technology in response to programming paradigms.
Illustrates challenges in adopting new database models, even when they have theoretical advantages.
Helps in understanding the strengths and limitations of different database types.

Think about an application you use regularly (e.g., a social media app). Try to imagine how its data might be structured
as objects (User objects, Post objects, etc.). Then consider why a relational model might be chosen instead. This
exercise will help you grasp the trade-offs between object-oriented and relational data models.

1980S - OBJECT-ORIENTED DATABASES
Designed to handle complex data structures
Integration with object-oriented programming
languages

16.1

1980S - OBJECT-ORIENTED DATABASES
Designed to handle complex data structures
Integration with object-oriented programming
languages
Examples: Versant, ObjectStore

16.2

1980S - OBJECT-ORIENTED DATABASES
Designed to handle complex data structures
Integration with object-oriented programming
languages
Examples: Versant, ObjectStore
Limited adoption compared to relational
databases

16.3

1990S - RISE OF DATA WAREHOUSING
AND OLAP

Inmon and Kimball's data warehouse
methodologies

17

1990S - RISE OF DATA WAREHOUSING
AND OLAP

Inmon and Kimball's data warehouse
methodologies
Introduction of star schema and snowflake
schema

17.1

1990S - RISE OF DATA WAREHOUSING
AND OLAP

Inmon and Kimball's data warehouse
methodologies
Introduction of star schema and snowflake
schema
Development of OLAP (Online Analytical
Processing) tools

17.2

1990S - RISE OF DATA WAREHOUSING
AND OLAP

Inmon and Kimball's data warehouse
methodologies
Introduction of star schema and snowflake
schema
Development of OLAP (Online Analytical
Processing) tools
Separation of transactional and analytical systems

17.3

2000S - NOSQL AND BIG DATA
NoSQL databases emerge to handle web-scale
data

Types: Document, Key-value, Column-family,
Graph

18

2000S - NOSQL AND BIG DATA
NoSQL databases emerge to handle web-scale
data

Types: Document, Key-value, Column-family,
Graph

Examples: MongoDB, Cassandra, Neo4j

18.1

2000S - NOSQL AND BIG DATA
NoSQL databases emerge to handle web-scale
data

Types: Document, Key-value, Column-family,
Graph

Examples: MongoDB, Cassandra, Neo4j
Big Data technologies: Hadoop, MapReduce

18.2

2000S - NOSQL AND BIG DATA
NoSQL databases emerge to handle web-scale
data

Types: Document, Key-value, Column-family,
Graph

Examples: MongoDB, Cassandra, Neo4j
Big Data technologies: Hadoop, MapReduce
Emphasis on scalability and flexibility

18.3

2010S - CLOUD DATABASES AND NEWSQL
Cloud-based database services (DBaaS)

Examples: Amazon RDS, Google Cloud SQL,
Azure SQL Database

19

2010S - CLOUD DATABASES AND NEWSQL
Cloud-based database services (DBaaS)

Examples: Amazon RDS, Google Cloud SQL,
Azure SQL Database

NewSQL: Combining ACID properties with NoSQL
scalability

Examples: Google Spanner, CockroachDB

19.1

2010S - CLOUD DATABASES AND NEWSQL
Cloud-based database services (DBaaS)

Examples: Amazon RDS, Google Cloud SQL,
Azure SQL Database

NewSQL: Combining ACID properties with NoSQL
scalability

Examples: Google Spanner, CockroachDB
Increased focus on distributed systems and global
scale

19.2

CURRENT TRENDS
AI/ML integration in databases

Automated tuning, predictive analytics

20

Speaker notes

1. AI/ML integration in databases:
Automated tuning: Databases can optimize themselves based on usage patterns.
Predictive analytics: Embedding machine learning models directly into the database for real-time
predictions.
Why it matters: Reduces need for manual database administration and enables more sophisticated,

2. Graph databases:
Purpose: Optimized for managing and querying highly interconnected data.
Use cases: Social network analysis, fraud detection, recommendation engines.
Examples: Neo4j, Amazon Neptune
Why it's important: Enables efficient analysis of relationships in data, which is challenging in traditional
relational databases.

3. Multi-model databases:
Definition: Databases that can store and process multiple data models (e.g., relational, document, graph)
in a single system.
Advantage: Provides flexibility to handle diverse data types and queries within one database system.
Examples: ArangoDB, OrientDB
Why it matters: Simplifies data architecture and reduces the need for multiple specialized databases.

4. Blockchain in database management:
Application: Using blockchain technology to create tamper-proof audit trails and ensure data integrity.
Potential use cases: Financial transactions, supply chain management, healthcare records.
Current status: Still an emerging area, with more potential than widespread adoption.
Why it's significant: Could revolutionize how we ensure data integrity and trust in distributed systems.

5. Overall impact of these trends:
Databases are becoming more intelligent, flexible, and capable of handling diverse and complex data.
The lines between traditional databases, data warehouses, and analytics platforms are blurring.
These advancements are enabling new types of applications and business models.

6. Challenges:
Keeping up with rapidly evolving technology
Ensuring security and privacy with more complex systems

Managing the increased complexity these advanced features bring
For each trend, try to think of a specific application or company that might benefit from it. For example, how might a
social media company use graph databases? How could a bank leverage blockchain in its database systems? This
exercise will help you connect these trends to real-world scenarios.

CURRENT TRENDS
AI/ML integration in databases

Automated tuning, predictive analytics
Graph databases for complex relationship analysis

20.1

CURRENT TRENDS
AI/ML integration in databases

Automated tuning, predictive analytics
Graph databases for complex relationship analysis
Multi-model databases

20.2

CURRENT TRENDS
AI/ML integration in databases

Automated tuning, predictive analytics
Graph databases for complex relationship analysis
Multi-model databases
Blockchain in database management

20.3

FOUNDING
PRINCIPLES OF

DBMS
21

DATA INDEPENDENCE
Physical Data Independence

Changes in storage structures don't affect
application programs

22

Speaker notes

1. Data Independence:
Definition: The ability to change the database structure without affecting the programs or users accessing
it.

2. Types of Data Independence:
1. Physical Data Independence:

Definition: The ability to modify the physical storage structure without affecting application
programs.
What can be changed:

Storage devices (e.g., switching from HDD to SSD)
File organizations (e.g., changing from heap files to indexed files)
Access methods (e.g., implementing new indexing techniques)

Example: Moving from a single server to a distributed database system without changing
application code.
Why it matters: Allows for performance optimizations and hardware upgrades without disrupting
applications.

2. Logical Data Independence:
Definition: The ability to change the logical schema without affecting application programs.
What can be changed:

Adding or removing tables
Adding or removing columns in existing tables
Changing relationships between tables

Example: Adding a new column "loyalty_points" to a Customer table without requiring changes
to existing applications.
Why it matters: Enables database evolution to meet new business requirements without major
application rewrites.

3. Benefits of Data Independence:
1. Flexibility:

Allows the database to evolve as needs change.
Supports adaptation to new technologies without massive overhauls.

2. Maintainability:
Reduces the impact of database changes on the overall system.
Simplifies updates and modifications to either the database or applications.

3. Scalability:
Enables growth in data volume or complexity without necessitating application changes.
Supports transitions to more powerful hardware or distributed systems.

4. How Data Independence is Achieved:
Through the use of abstraction layers in the DBMS architecture.
View mechanisms that present a stable interface to applications.
Separation of concerns between data storage, data model, and application logic.

5. Challenges in Maintaining Data Independence:
Ensuring performance doesn't degrade with abstractions.
Balancing flexibility with optimization opportunities.
Managing complex view updates in cases of logical data independence.

6. Real-world Importance:
Crucial for large, long-lived systems where both the database and applications evolve over time.
Essential in enterprise environments where multiple applications share the same database.
Key factor in reducing the total cost of ownership for database systems.

Think about a familiar application (e.g., a school management system). Consider how you might need to change the
database over time (adding new types of courses, changing storage systems). How would data independence principles
help manage these changes without disrupting the entire system? This exercise will help you appreciate the practical
value of data independence in real-world scenarios.

DATA INDEPENDENCE
Physical Data Independence

Changes in storage structures don't affect
application programs

Logical Data Independence
Changes in logical schema don't affect
application programs

22.1

DATA INDEPENDENCE
Physical Data Independence

Changes in storage structures don't affect
application programs

Logical Data Independence
Changes in logical schema don't affect
application programs

Benefits: Flexibility, maintainability, scalability

22.2

ACID PROPERTIES
Atomicity: All-or-nothing transaction execution

23

ACID PROPERTIES
Atomicity: All-or-nothing transaction execution
Consistency: Database remains in a valid state
after transaction

23.1

ACID PROPERTIES
Atomicity: All-or-nothing transaction execution
Consistency: Database remains in a valid state
after transaction
Isolation: Concurrent transactions don't interfere
with each other

23.2

ACID PROPERTIES
Atomicity: All-or-nothing transaction execution
Consistency: Database remains in a valid state
after transaction
Isolation: Concurrent transactions don't interfere
with each other
Durability: Committed transactions are
permanent

23.3

ATOMICITY
 +---------------------+ +---------------------+
Account A		Account B
Balance: $1000		Balance: $500
---------------------		---------------------
Debit: $100 (-)	---------->	Credit: $100 (+)
 +---------------------+ +---------------------+
 | |
 | |
 V V
 Atomicity: Atomicity:
 Both actions succeed Both actions succeed
 or none do. or none do.

24

CONSISTENCY
 Total balance remains the same: $1000 + $500 = $1500
 Consistency: Total amount conserved.

25

ISOLATION
[Transaction 1] [Transaction 2]
+--------------------+ +---------------------+
Transfer: A to B		Transfer: C to D
--------------------		---------------------
Isolated from		Isolated from
Transaction 2		Transaction 1
+--------------------+ +---------------------+
 Isolation: Transactions don't interfere with each other

26

DURABILITY
 CRASH

 Durability: Balances are saved, even after failure

 After system restarts:
 +---------------------+ +---------------------+
 | Account A | | Account B |
 | Balance: $900 | | Balance: $600 |
 +---------------------+ +---------------------+

27

CONCURRENCY CONTROL
Managing simultaneous access to data

28

CONCURRENCY CONTROL
Managing simultaneous access to data
Techniques:

Locking (Shared locks, Exclusive locks)
Multiversion Concurrency Control (MVCC)

28.1

CONCURRENCY CONTROL
Managing simultaneous access to data
Techniques:

Locking (Shared locks, Exclusive locks)
Multiversion Concurrency Control (MVCC)

Dealing with deadlocks

28.2

CONCURRENCY CONTROL
Managing simultaneous access to data
Techniques:

Locking (Shared locks, Exclusive locks)
Multiversion Concurrency Control (MVCC)

Dealing with deadlocks
Ensuring data consistency in multi-user
environments

28.3

DATA INTEGRITY AND CONSTRAINTS
Entity Integrity: Primary Key constraints

29

DATA INTEGRITY AND CONSTRAINTS
Entity Integrity: Primary Key constraints
Entity Integrity: Foreign Key constraints

29.1

DATA INTEGRITY AND CONSTRAINTS
Entity Integrity: Primary Key constraints
Entity Integrity: Foreign Key constraints
Domain Integrity: Data type, format constraints

29.2

DATA INTEGRITY AND CONSTRAINTS
Entity Integrity: Primary Key constraints
Entity Integrity: Foreign Key constraints
Domain Integrity: Data type, format constraints
User-Defined Integrity: Custom business rules

29.3

DATA INTEGRITY AND CONSTRAINTS
Entity Integrity: Primary Key constraints
Entity Integrity: Foreign Key constraints
Domain Integrity: Data type, format constraints
User-Defined Integrity: Custom business rules
Importance in maintaining data quality

29.4

QUERY OPTIMIZATION
Process of selecting the most efficient query
execution plan

30

Speaker notes

1. Definition: Query optimization is the process of selecting the most efficient way to execute a database query.
2. Importance:

Can dramatically improve query performance, turning hours-long queries into seconds.
Critical for maintaining responsiveness in large databases.

3. Components of query optimization:
Query rewriting:

Definition: Restructuring a query to a more efficient form without changing its result.
Example: Pushing down filters before joins to reduce the amount of data processed.
Why it matters: Can significantly reduce the amount of data the database needs to process.

Statistics and cost estimation:
Definition: Using database statistics to estimate the cost of different execution plans.
Examples of statistics: Table sizes, data distribution, index information.
Why it matters: Allows the optimizer to make informed decisions about the best execution plan.

Join order selection:
Definition: Determining the most efficient order to join tables in a query.
Example: In a query joining tables A, B, and C, is it more efficient to join A and B first, or B and
C?
Why it matters: Join order can have a massive impact on query performance, especially for
queries involving many tables.

4. How query optimization works:
The database analyzes multiple possible execution plans.
It estimates the cost of each plan based on statistics and heuristics.
It selects the plan with the lowest estimated cost.

5. Challenges in query optimization:
Statistics can become outdated, leading to suboptimal plans.
Complex queries can have an enormous number of possible execution plans.
Optimizing for all possible queries is computationally infeasible.

6. Practical implications:
Understanding query optimization can help in writing more efficient SQL queries.

It's crucial for database administrators in tuning database performance.
In data warehouses, query optimization is especially important due to the complex, analytical nature of
queries.

Try writing a complex SQL query (e.g., joining several tables with multiple conditions) and then use your database's
EXPLAIN feature to see the execution plan. Try rewriting the query in different ways and observe how the execution
plan changes. This hands-on experience will help you understand query optimization in practice.

QUERY OPTIMIZATION
Process of selecting the most efficient query
execution plan
Components of query optimization:

Query rewriting
Statistics and cost estimation
Join order selection

30.1

QUERY OPTIMIZATION
Process of selecting the most efficient query
execution plan
Components of query optimization:

Query rewriting
Statistics and cost estimation
Join order selection

Impact on database performance

30.2

TRANSACTION MANAGEMENT
Definition of database transactions

31

Transaction management in databases ensures the ACID properties—Atomicity, Consistency, Isolation, and Durability—
are maintained. When multiple users or processes access a database concurrently, the system must ensure that these
transactions do not interfere with one another, ensuring data integrity. One way to manage this is through locking
mechanisms that prevent conflicting changes to the same data. Another is Multiversion Concurrency Control (MVCC),
where each user sees a consistent snapshot of the database. It's crucial to handle transaction failures effectively by
rolling back incomplete transactions and ensuring no data corruption occurs.

Speaker notes

TRANSACTION MANAGEMENT
Definition of database transactions
Transaction states: Active, Partially Committed,
Failed, Aborted, Committed

31.1

TRANSACTION MANAGEMENT
Definition of database transactions
Transaction states: Active, Partially Committed,
Failed, Aborted, Committed
Transaction scheduling

31.2

TRANSACTION MANAGEMENT
Definition of database transactions
Transaction states: Active, Partially Committed,
Failed, Aborted, Committed
Transaction scheduling
Handling transaction failures and system crashes

31.3

RECOVERY MECHANISMS
Ensuring data persistence and consistency after
failures

32

Recovery mechanisms in databases ensure that data remains consistent and durable, even in the event of a failure.
Techniques like Write-Ahead Logging (WAL) ensure that all changes are logged before they are applied to the database.
If a crash occurs, the database can roll back incomplete transactions or roll forward completed transactions from the log.
Checkpointing creates a stable point to which the database can restore in case of failure, minimizing recovery time.
Recovery mechanisms are especially important in large, distributed databases to prevent data loss and corruption
across nodes.

Speaker notes

RECOVERY MECHANISMS
Ensuring data persistence and consistency after
failures
Recovery techniques:

Write-Ahead Logging (WAL)
Checkpointing
Rollback and Rollforward operations

32.1

RECOVERY MECHANISMS
Ensuring data persistence and consistency after
failures
Recovery techniques:

Write-Ahead Logging (WAL)
Checkpointing
Rollback and Rollforward operations

Balancing performance and reliability

32.2

IN-CLASS EXERCISE:
DBMS PRINCIPLES

33

EXERCISE INSTRUCTIONS
Form groups of 3-4 students
Each group will be assigned a real-world scenario
Identify which DBMS principles are most relevant
to the scenario
Discuss how these principles address the
challenges in the scenario
Prepare a brief presentation of your findings

34

SCENARIO EXAMPLES
1. Online banking system handling thousands of

transactions per second
2. E-commerce platform updating inventory across

multiple warehouses
3. Healthcare system managing patient records with

strict privacy requirements
4. Social media platform supporting millions of

concurrent users
link

35

https://phparis.net/exercises/dbms_principles/

DATA WAREHOUSE:
MOTIVATIONS

36

LIMITATIONS OF OPERATIONAL
DATABASES FOR ANALYTICS

Designed for day-to-day transactions, not complex
queries

37

1. Operational databases are designed for day-to-day transactions, not complex analytics:
Optimized for quick inserts and updates, not large-scale data retrieval.
Schema designed for operational efficiency, not analytical queries.

2. Performance impact of analytical queries on operational systems:
Complex queries can slow down critical business operations.
Example: Running a year-end sales analysis could impact the system's ability to process new orders.

3. Lack of historical data retention:
Operational systems often only keep current or recent data.
Example: If you want to analyze sales trends over the past 5 years, but your system only keeps the last 6
months of data, you can't perform the analysis.

4. Data scattered across multiple systems:
In many organizations, relevant data is spread across various operational systems.
Example: Customer information might be in a CRM system, their purchase history in an ERP system,
and their support tickets in a helpdesk system.

5. Why these limitations led to data warehouses:
Data warehouses are designed to address these specific challenges.
They provide a centralized repository optimized for analytical queries.
Allow integration of data from multiple sources into a consistent format.
Designed to store and manage historical data effectively.

6. Impact on business:
Without addressing these limitations, businesses struggle to gain comprehensive insights from their data.
Data-driven decision making becomes challenging and time-consuming.
Competitive advantage can be lost to more data-savvy competitors.

Think about a business you're familiar with. What kinds of analytical questions might they want to ask that would be

Speaker notes

difficult with just operational databases? How might a data warehouse help them answer these questions more
effectively?

LIMITATIONS OF OPERATIONAL
DATABASES FOR ANALYTICS

Designed for day-to-day transactions, not complex
queries
Performance impact of analytical queries on
operational systems

37.1

LIMITATIONS OF OPERATIONAL
DATABASES FOR ANALYTICS

Designed for day-to-day transactions, not complex
queries
Performance impact of analytical queries on
operational systems
Lack of historical data retention

37.2

LIMITATIONS OF OPERATIONAL
DATABASES FOR ANALYTICS

Designed for day-to-day transactions, not complex
queries
Performance impact of analytical queries on
operational systems
Lack of historical data retention
Data scattered across multiple systems

37.3

Analyst: "How many sales completed in dec. before Christmas per
group of product and discount?"

Source: Ulf Leser, Data Warehouses course

Large relationships (millions of orders, sessions), numerous joins
⇒ potentially difficult query.

SELECTSELECT Y Y..yearyear,, PG PG..namename,, DI DI..discdisc,, countcount((**))
FROMFROM yearyear Y Y,, monthmonth M M,, dayday D D,, sessionsession S S,,
 line_item I line_item I,, orderorder O O,, product P product P,, productgroup PG productgroup PG,,
 discount DI discount DI,, order_status OS order_status OS
WHEREWHERE M M..year_id year_id == Y Y..id id andand
 D D..month_id month_id == M M..id id andand
 S S..day_id day_id == D D..id id andand
 O O..session_id session_id == S S..id id andand
 I I..order_id order_id == O O..id id andand
 I I..product_id product_id == P P..id id andand
 P P..productgroup_id productgroup_id == PG PG..id id andand
 DI DI..productgroup_id productgroup_id == PG PG..id id andand
 O O..id id == OS OS..order_id order_id andand
 D D..dayday << 2424 andand
 M M..monthmonth == 1212
 andand OS OS..statusstatus=='FINISHED''FINISHED'
GROUPGROUP BYBY Y Y..yearyear,, PG PG..namename,, DI DI..discountdiscount
ORDERORDER BYBY Y Y..yearyear,, DI DI..discountdiscount

38

NEED FOR HISTORICAL AND
AGGREGATED DATA

Business requirements for trend analysis

39

NEED FOR HISTORICAL AND
AGGREGATED DATA

Business requirements for trend analysis
Comparing current performance with historical
data

39.1

NEED FOR HISTORICAL AND
AGGREGATED DATA

Business requirements for trend analysis
Comparing current performance with historical
data
Aggregations for different time periods (daily,
monthly, yearly)

39.2

NEED FOR HISTORICAL AND
AGGREGATED DATA

Business requirements for trend analysis
Comparing current performance with historical
data
Aggregations for different time periods (daily,
monthly, yearly)

 Analyzing sales trends over the past 5 years

39.3

SUPPORT FOR COMPLEX QUERIES AND
REPORTING

Ad-hoc querying capabilities

40

Speaker notes

1. Ad-hoc querying capabilities:
Definition: Ability for users to create custom, on-the-fly queries without predefined templates.
Why it's important: Allows business users to explore data freely, answering new questions as they arise.
Example: A marketing manager wanting to quickly analyze the effectiveness of a campaign across
different customer segments and regions.

2. Handling multi-dimensional analysis:
Definition: Analyzing data across multiple dimensions simultaneously (e.g., time, geography, product).
How it works: Data is structured in a way that allows quick "slicing and dicing" across dimensions.
Example: Analyzing sales by product category, region, time period, and customer demographic all at
once.
Why it matters: Provides a comprehensive view of business performance and allows for deep, nuanced
analysis.

3. Rapid response times for large datasets:
How it's achieved: Through specific design choices like denormalization, pre-aggregation, and
specialized indexing.
Impact: Queries that might take hours on an operational system could return results in seconds in a well-
designed data warehouse.
Why it's crucial: Enables interactive analysis and rapid decision-making based on large volumes of data.

4. Supporting various reporting tools and dashboards:
Types of tools: Business Intelligence (BI) software, data visualization tools, custom reporting
applications.
Examples: Tableau, Power BI, Looker, QlikView.
Benefits:

Provides user-friendly interfaces for non-technical users to access and analyze data.
Enables creation of dynamic, interactive dashboards for monitoring key business metrics.
Allows for scheduled report generation and distribution.

5. Real-world applications:
Financial analysis: Quickly assessing profitability across multiple product lines and regions.
Customer segmentation: Identifying high-value customer groups based on various attributes and

behaviors.
Supply chain optimization: Analyzing inventory levels, supplier performance, and demand patterns
across the entire supply network.

6. Skills needed:
SQL for complex querying
Understanding of dimensional modeling concepts
Familiarity with BI and data visualization tools

If possible, get hands-on experience with a BI tool like Tableau Public (free version available). Try connecting to a
sample dataset and creating some multi-dimensional visualizations. This practical experience will help you understand
the power of these analytical capabilities.

SUPPORT FOR COMPLEX QUERIES AND
REPORTING

Ad-hoc querying capabilities
Handling multi-dimensional analysis

40.1

SUPPORT FOR COMPLEX QUERIES AND
REPORTING

Ad-hoc querying capabilities
Handling multi-dimensional analysis
Rapid response times for large datasets

40.2

SUPPORT FOR COMPLEX QUERIES AND
REPORTING

Ad-hoc querying capabilities
Handling multi-dimensional analysis
Rapid response times for large datasets
Supporting various reporting tools and
dashboards

40.3

IMPROVED DECISION-MAKING AND
BUSINESS INTELLIGENCE

Providing a single, consistent view of business
data

41

IMPROVED DECISION-MAKING AND
BUSINESS INTELLIGENCE

Providing a single, consistent view of business
data
Enabling data-driven decision making

41.1

IMPROVED DECISION-MAKING AND
BUSINESS INTELLIGENCE

Providing a single, consistent view of business
data
Enabling data-driven decision making
Supporting predictive analytics and forecasting

41.2

IMPROVED DECISION-MAKING AND
BUSINESS INTELLIGENCE

Providing a single, consistent view of business
data
Enabling data-driven decision making
Supporting predictive analytics and forecasting

 Using historical sales data to predict future demand

41.3

DATA CONSOLIDATION AND SINGLE
VERSION OF TRUTH

Integrating data from multiple sources

42

DATA CONSOLIDATION AND SINGLE
VERSION OF TRUTH

Integrating data from multiple sources
Resolving data inconsistencies and conflicts

42.1

DATA CONSOLIDATION AND SINGLE
VERSION OF TRUTH

Integrating data from multiple sources
Resolving data inconsistencies and conflicts
Providing a unified view of the organization

42.2

DATA CONSOLIDATION AND SINGLE
VERSION OF TRUTH

Integrating data from multiple sources
Resolving data inconsistencies and conflicts
Providing a unified view of the organization
Ensuring data quality and consistency across the
enterprise

42.3

DATA WAREHOUSE:
DEFINITIONS

43

BILL INMON'S DEFINITION

Subject-oriented: Organized around major
subjects (e.g., customer, product)

"A subject-oriented, integrated, time-variant,
and non-volatile collection of data in support
of management's decision-making process."

44

Speaker notes

"father of data warehousing"

1. Subject-oriented:
Meaning: Data is organized around major subjects of the enterprise (e.g., customers, products, sales).
Contrast with operational systems: These are often organized around specific applications or processes.
Example: Instead of having separate data for the order system, inventory system, and customer service
system, a data warehouse would organize all relevant data around the concept of "sales."
Why it matters: Provides a business-centric view of data, making it easier for analysts to work with.

2. Integrated:
Meaning: Data from different sources is merged into a consistent format.
Challenges addressed: Resolves differences in naming conventions, encoding structures, attribute
measures, etc.
Example: Combining data where one system uses "Gender" (M/F) and another uses "Sex" (0/1) into a
standardized format.
Why it matters: Ensures consistency and reliability in reporting and analysis across the entire
organization.

3. Time-variant:
Meaning: The data warehouse keeps historical data, not just current data.
How it's implemented: Often includes a time dimension in its structure.
Example: Storing multiple versions of a product price over time, not just the current price.
Why it matters: Enables trend analysis, year-over-year comparisons, and other time-based analytics.

4. Non-volatile:
Meaning: Once data enters the warehouse, it doesn't change.
How it works: Data is typically loaded in regular batches and is not continuously updated like in
operational systems.
Example: Yesterday's sales figures, once loaded into the warehouse, remain constant.
Why it matters: Ensures consistent reporting results and provides a stable environment for complex
queries.

5. In support of management's decision-making process:
Overall purpose: To provide reliable, comprehensive data for strategic decision-making.
Types of decisions supported: Long-term strategic planning, performance evaluation, trend analysis.

6. Inmon's approach (also known as Corporate Information Factory):
Advocates for a top-down design approach.
Emphasizes a centralized data warehouse that feeds departmental data marts.

Try to think of examples for each characteristic from a business you're familiar with. How might their data be subject-
oriented? What kinds of historical data might they need to keep? This exercise will help you understand how these
concepts apply in real-world scenarios.

BILL INMON'S DEFINITION

Subject-oriented: Organized around major
subjects (e.g., customer, product)

"A subject-oriented, integrated, time-variant,
and non-volatile collection of data in support
of management's decision-making process."

Integrated: Consistent naming conventions,
formats, encoding structures

44.1

BILL INMON'S DEFINITION

Subject-oriented: Organized around major
subjects (e.g., customer, product)

"A subject-oriented, integrated, time-variant,
and non-volatile collection of data in support
of management's decision-making process."

Integrated: Consistent naming conventions,
formats, encoding structures
Time-variant: Explicitly contains time dimension

44.2

BILL INMON'S DEFINITION

Subject-oriented: Organized around major
subjects (e.g., customer, product)

"A subject-oriented, integrated, time-variant,
and non-volatile collection of data in support
of management's decision-making process."

Integrated: Consistent naming conventions,
formats, encoding structures
Time-variant: Explicitly contains time dimension
Non-volatile: Data is stable and doesn't change
once it's in the warehouse

44.3

RALPH KIMBALL'S DEFINITION

Key aspects of Kimball's approach:

"A copy of transaction data specifically
structured for query and analysis."

45

Speaker notes

1. Interpretation of the definition:
"Copy of transaction data": Implies that the data warehouse doesn't replace operational systems but
replicates their data.
"Specifically structured": The data is reorganized and optimized for analytical purposes.
"For query and analysis": The primary goal is to support business intelligence and decision-making
processes.

2. Key aspects of Kimball's approach:
1. Dimensional modeling:

Definition: A technique for structuring data in a way that's intuitive for business users and
optimized for query performance.
Key components:

Fact tables: Contain quantitative metrics of business processes (e.g., sales amounts,
quantities).
Dimension tables: Contain descriptive attributes (e.g., product details, customer
information, time).

Benefits:
Simplifies complex queries
Improves query performance
Makes data more understandable to business users

Example: A sales fact table might have foreign keys to dimensions like Date, Product,
Customer, and Store.

2. Bus architecture:
Definition: A design approach that uses standardized dimensions across different business
processes.
How it works:

Identifies key business processes (e.g., sales, orders, inventory)
Defines conformed dimensions that can be used across these processes

Benefits:
Enables integration of data marts across the enterprise

Ensures consistency in reporting across different business areas
Example: A "Customer" dimension used consistently across sales, support, and marketing data
marts.

3. Focus on business processes:
Approach: Organizes the data warehouse around core business processes rather than
departments.
Why it matters:

Aligns the data warehouse with how the business actually operates
Facilitates end-to-end analysis of business processes
Makes the data warehouse more adaptable to organizational changes

Example: Focusing on an "Order to Cash" process rather than separate "Sales" and "Finance"
data marts.

3. Kimball vs. Inmon approach:
Kimball advocates a bottom-up approach, starting with individual data marts.
Inmon prefers a top-down approach with a centralized data warehouse.
Kimball's approach often allows for faster implementation and more flexibility.

4. Impact on data warehouse design:
Emphasis on creating a user-friendly, business-oriented data structure.
Use of star schemas or snowflake schemas in database design.
Development of conformed dimensions for enterprise-wide consistency.

5. Skills needed to implement Kimball's approach:
Understanding of business processes and metrics
Proficiency in dimensional modeling techniques
Ability to design and implement star schemas
Knowledge of ETL processes to populate dimensional models

Try to design a simple star schema for a business process you're familiar with (e.g., sales, library book checkouts).
Identify what would be in the fact table and what dimensions you'd need. This exercise will help you grasp the practical
application of Kimball's dimensional modeling concept.

RALPH KIMBALL'S DEFINITION

Key aspects of Kimball's approach:

"A copy of transaction data specifically
structured for query and analysis."

Dimensional modeling

45.1

RALPH KIMBALL'S DEFINITION

Key aspects of Kimball's approach:

"A copy of transaction data specifically
structured for query and analysis."

Dimensional modeling
Bus architecture

45.2

RALPH KIMBALL'S DEFINITION

Key aspects of Kimball's approach:

"A copy of transaction data specifically
structured for query and analysis."

Dimensional modeling
Bus architecture
Focus on business processes

45.3

KEY CHARACTERISTICS OF A DATA
WAREHOUSE

Centralized repository

46

KEY CHARACTERISTICS OF A DATA
WAREHOUSE

Centralized repository
Optimized for reading and analysis

46.1

KEY CHARACTERISTICS OF A DATA
WAREHOUSE

Centralized repository
Optimized for reading and analysis
Contains both detailed and summarized data

46.2

KEY CHARACTERISTICS OF A DATA
WAREHOUSE

Centralized repository
Optimized for reading and analysis
Contains both detailed and summarized data
Supports time series and trend analysis

46.3

KEY CHARACTERISTICS OF A DATA
WAREHOUSE

Centralized repository
Optimized for reading and analysis
Contains both detailed and summarized data
Supports time series and trend analysis
Metadata-driven

46.4

COMPARISON WITH OPERATIONAL
DATABASES

Aspect Data Warehouse Operational
Database

Purpose Analytics Transactions

Data model Dimensional Normalized

Data freshness Periodic updates Real-time

Query
complexity

Complex,
unpredictable

Simple, predictable

User base Analysts, executives Clerks, customers

47

OLTP VS OLAP

48

OLTP (ONLINE TRANSACTION
PROCESSING)

Characteristics:
Handles day-to-day transactions
Short, simple transactions
High concurrency
Predictable, repetitive queries

49

OLTP (ONLINE TRANSACTION
PROCESSING)

Characteristics:
Handles day-to-day transactions
Short, simple transactions
High concurrency
Predictable, repetitive queries

Use cases:
Banking transactions
Airline reservations
Order processing

49.1

DATABASE DESIGN FOR OLTP
Normalized data model (3NF)

50

DATABASE DESIGN FOR OLTP
Normalized data model (3NF)
Optimized for write operations

50.1

DATABASE DESIGN FOR OLTP
Normalized data model (3NF)
Optimized for write operations
Index design for quick lookups

50.2

DATABASE DESIGN FOR OLTP
Normalized data model (3NF)
Optimized for write operations
Index design for quick lookups
Focus on data integrity and consistency

50.3

OLAP (ONLINE ANALYTICAL
PROCESSING)

Characteristics:
Supports complex analytical queries
Aggregations and summarizations
Lower concurrency, longer-running queries
Historical and predictive analysis

51

OLAP (ONLINE ANALYTICAL
PROCESSING)

Characteristics:
Supports complex analytical queries
Aggregations and summarizations
Lower concurrency, longer-running queries
Historical and predictive analysis

Use cases:
Sales analysis
Financial reporting
Customer segmentation 51.1

MULTIDIMENSIONAL DATA MODEL
Dimensions: Descriptive attributes (e.g., time,
product, location)

52

MULTIDIMENSIONAL DATA MODEL
Dimensions: Descriptive attributes (e.g., time,
product, location)
Measures: Numerical values for analysis

52.1

MULTIDIMENSIONAL DATA MODEL
Dimensions: Descriptive attributes (e.g., time,
product, location)
Measures: Numerical values for analysis
Cube structure: Allows quick slicing and dicing of
data

52.2

OLAP cube slicing

53

COMPARISON OF OLTP AND OLAP
Aspect OLTP OLAP

Workload Many short, atomic
transactions

Few complex queries

Data model Highly normalized Typically denormalized
(star or snowflake
schema)

User types Clerks, customers,
automated
processes

Knowledge workers,
business analysts,
executives

Records
accessed

Tens Millions

54

This slide compares Online Transaction Processing (OLTP) with Online Analytical Processing (OLAP), two core
database processing paradigms. OLTP is designed for high concurrency and supports day-to-day transactional tasks
like customer order processing or ATM withdrawals. Its database design is highly normalized to avoid redundancy and
ensure data integrity. OLAP, on the other hand, is optimized for complex queries and analytical reporting. It often uses a
denormalized schema like a star or snowflake model to support rapid aggregation and multidimensional analysis, such
as sales trends over time. OLTP databases prioritize quick writes and updates, while OLAP systems are optimized for
read-heavy operations.

Speaker notes

IN-CLASS EXERCISE:
OLTP VS OLAP

55

EXERCISE INSTRUCTIONS
Students will be given a list of business scenarios
For each scenario, identify whether it's better
suited for OLTP or OLAP
Justify your choice based on the characteristics
we've discussed
We'll discuss the answers as a class

56

SCENARIO EXAMPLES
1. Processing customer orders on an e-commerce

website
2. Analyzing customer buying patterns over the last 5

years
3. Updating inventory levels after each sale
4. Generating a report on the top-selling products by

region
5. Recording patient visits in a hospital
6. Predicting future sales based on historical data

and market trends
link

57

https://phparis.net/exercises/oltp_vs_olap/

DW INDUSTRIAL
LANDSCAPE

58

MAJOR PLAYERS IN THE DW MARKET
Traditional vendors:

Oracle
IBM (Db2)
Microsoft (SQL
Server)
Teradata

59

MAJOR PLAYERS IN THE DW MARKET
Traditional vendors:

Oracle
IBM (Db2)
Microsoft (SQL
Server)
Teradata

59.1

MAJOR PLAYERS IN THE DW MARKET
Traditional vendors:

Oracle
IBM (Db2)
Microsoft (SQL
Server)
Teradata

59.2

CLOUD DATA WAREHOUSE SOLUTIONS
Benefits of cloud data warehouses:

Scalability
Cost-effectiveness
Managed services
Integration with cloud ecosystems

60

CLOUD DATA WAREHOUSE SOLUTIONS
Benefits of cloud data warehouses:

Scalability
Cost-effectiveness
Managed services
Integration with cloud ecosystems

Comparison of leading cloud DW solutions

60.1

CLOUD DATA WAREHOUSE SOLUTIONS
Benefits of cloud data warehouses:

Scalability
Cost-effectiveness
Managed services
Integration with cloud ecosystems

Comparison of leading cloud DW solutions
Hybrid and multi-cloud strategies

60.2

OPEN-SOURCE DATA WAREHOUSE
TOOLS

Apache Hadoop ecosystem:
Hive, HBase, Impala

61

OPEN-SOURCE DATA WAREHOUSE
TOOLS

Apache Hadoop ecosystem:
Hive, HBase, Impala

Analytical databases:
ClickHouse, Apache Druid

61.1

OPEN-SOURCE DATA WAREHOUSE
TOOLS

Apache Hadoop ecosystem:
Hive, HBase, Impala

Analytical databases:
ClickHouse, Apache Druid

ETL and data integration:
Apache NiFi, Talend Open Studio

61.2

OPEN-SOURCE DATA WAREHOUSE
TOOLS

Apache Hadoop ecosystem:
Hive, HBase, Impala

Analytical databases:
ClickHouse, Apache Druid

ETL and data integration:
Apache NiFi, Talend Open Studio

Visualization and BI:
Apache Superset, Metabase

61.3

EMERGING TRENDS IN DATA
WAREHOUSING

Real-time data warehousing:
Streaming data
integration
Real-time analytics

62

Data lakes are repositories that store vast amounts of raw, unstructured, and semi-structured data. Unlike traditional
data warehouses, which require data to be transformed before storage, data lakes store everything as-is. They are ideal
for capturing streaming data from IoT devices or social media platforms. Increasingly, companies are integrating data
lakes with data warehouses to form a "data lakehouse" architecture, where raw data is stored in the lake but can be
processed and analyzed through a warehouse. This hybrid approach gives businesses the flexibility to handle both real-
time and historical data in a unified ecosystem.

Speaker notes

EMERGING TRENDS IN DATA
WAREHOUSING

Real-time data warehousing:
Streaming data
integration
Real-time analytics

Data lake integration:
Data lakehouse concept
Unified analytics on
structured and
unstructured data

62.1

EMERGING TRENDS IN DATA
WAREHOUSING

Real-time data warehousing:
Streaming data
integration
Real-time analytics

Data lake integration:
Data lakehouse concept
Unified analytics on
structured and
unstructured data

62.2

CONCLUSION AND
PREVIEW

63

RECAP OF KEY POINTS
Challenges driving the need for data warehouses
Evolution of database technologies
Fundamental principles of DBMS
Distinctions between OLTP and OLAP systems
Current landscape and trends in data warehousing

64

PREVIEW OF NEXT WEEK'S TOPICS
Data warehouse architectures
Dimensional modeling
Introduction to ETL processes

65

A typical data warehouse architecture follows a multi-layered approach. The source layer contains the raw data
from various transactional systems. The ETL (Extract, Transform, Load) layer processes this data by extracting it
from multiple sources, transforming it into a consistent format, and loading it into the warehouse. The data storage
layer is where the processed data resides—usually in a dimensional format to support analytical queries. Finally,
the presentation layer is what users interact with through reporting tools, dashboards, or direct queries. This
architecture supports the separation of concerns: operational systems handle transactions, while the warehouse
manages analytics.
Dimensional modeling is a design technique used in data warehouses that focuses on simplifying complex
queries. It organizes data into "facts" and "dimensions." Facts are quantitative data points (like sales amounts or
quantities) while dimensions are descriptive data that provide context (like time, location, or product categories). A
common representation of this model is the star schema, where facts are at the center of the "star," and
dimensions surround it. The snowflake schema is a more normalized version, where dimensions themselves are
further broken down into related sub-dimensions. This model helps optimize queries for fast retrieval and is
especially useful for reporting and analytical tasks.
ETL (Extract, Transform, Load) processes are critical to data warehousing. Data is first extracted from multiple,
often heterogeneous sources, such as databases, flat files, or APIs. It’s then transformed, which can involve data
cleaning, normalization, and aggregating records. For example, sales data from different countries might need to
be converted to a standard currency or date format. The transformed data is then loaded into the data warehouse
for analysis. ETL processes often happen in batch jobs, especially during off-hours to reduce the load on
operational systems. For real-time data warehouses, ELT (Extract, Load, Transform) processes are more
common, where data is loaded first and then processed within the warehouse.

Speaker notes

Q&A

66

If you have any questions or comments, please do not
hesitate to contact me:

 me[at]phparis[dot]net

67

