
DATA WAREHOUSE I
WEEK 2

© 2024 Pierre-Henri Paris
This work is licensed under CC BY

4.0

 
1

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0

MULTI-DIMENSIONAL
MODEL

2

INTRODUCTION TO MULTI-DIMENSIONAL
MODEL

 Purpose: Enable complex analytical and ad-hoc
queries with rapid execution time

 Key components: dimensions, measures, facts

 A data structure optimized for data analysis

3

DIMENSIONS

 Examples: time, product, customer, location

Dimensions are tables containing:
Attributes: Descriptive properties of a dimension

 product name, color, size
Hierarchies: Logical structures within a dimension
that support different levels of granularity

 Example: Year > Quarter > Month > Day

 Descriptive attributes by which facts are analyzed

4

DIMENSIONS IN DATA WAREHOUSING
DEFINITION
Dimensions are descriptive attributes used to analyze facts in a data warehouse. They provide the context for numerical
measures (facts) and enable various types of analysis.

KEY CHARACTERISTICS
1. Serve as the foundation for querying and filtering data
2. Organize data into hierarchies, allowing for drill-down and roll-up operations
3. Contain textual descriptions that give meaning to the numerical facts

COMMON EXAMPLES
Time: Allows analysis of data over different time periods (e.g., day, month, quarter, year)
Product: Enables analysis of data by product categories, individual products, etc.
Customer: Facilitates analysis based on customer attributes (e.g., demographics, behavior)
Location: Supports geographical analysis (e.g., country, region, city)

ATTRIBUTES AND HIERARCHIES
Attributes: Descriptive properties of a dimension (e.g., product name, color, size)
Hierarchies: Logical structures within a dimension that support different levels of granularity

Example: Time hierarchy - Year > Quarter > Month > Day

TYPES OF DIMENSIONS

Speaker notes

1. CONFORMED DIMENSIONS

Definition: Dimensions that are shared across multiple fact tables or data marts
Purpose: Ensure consistency and enable integrated analysis across the entire data warehouse
Example: A customer dimension used in both sales and support fact tables

2. ROLE-PLAYING DIMENSIONS

Definition: A single dimension used multiple times in a fact table, each time with a different context
Purpose: Reduce redundancy and save storage while maintaining logical distinctions
Example: A date dimension playing roles like order date, ship date, and delivery date in an order fact table

3. JUNK DIMENSIONS

Definition: A dimension that combines several low-cardinality attributes (flags or indicators) into a single
dimension
Purpose: Simplify the dimensional model by reducing the number of small dimensions
Example: Combining order status, shipping method, and payment type into a single dimension

4. DEGENERATE DIMENSIONS

Definition: Dimensional attributes stored in the fact table rather than in a separate dimension table
Purpose: Improve query performance for attributes that are used primarily for grouping facts
Example: Order number or transaction ID stored directly in the fact table

BEST PRACTICES
1. Design dimensions with the end-users' analytical needs in mind
2. Ensure dimension tables contain rich, descriptive attributes to support various types of analysis
3. Use meaningful, business-friendly names for dimension attributes
4. Regularly update slowly changing dimensions to maintain data accuracy
5. Document the structure and meaning of each dimension thoroughly

Example of dimensions

5

MEASURES

Types of measures:
Additive: Can be summed across all
dimensions
Semi-additive: Can be summed across some
dimensions
Non-additive: Cannot be summed
meaningfully

Derived measures and calculated members

 Numerical facts to be analyzed

6

MEASURES IN DATA WAREHOUSING
DEFINITION
Measures are numerical facts to be analyzed in a data warehouse. They represent the quantitative data that users want
to examine and analyze across various dimensions.

TYPES OF MEASURES

1. ADDITIVE MEASURES

Definition: Measures that can be summed across all dimensions
Characteristics:

Can be aggregated meaningfully along any dimension
Most common type of measure in data warehouses

Examples: Sales amount, quantity sold, revenue
2. SEMI-ADDITIVE MEASURES

Definition: Measures that can be summed across some dimensions, but not all
Characteristics:

Often meaningful when aggregated over some dimensions (e.g., products) but not others (e.g., time)
Require careful consideration when aggregating

Examples: Account balance, inventory levels
3. NON-ADDITIVE MEASURES

Speaker notes

Definition: Measures that cannot be summed meaningfully across any dimension
Characteristics:

Often ratios, percentages, or averages
Require special handling in analysis and reporting

Examples: Profit margin percentages, average prices, ratios

DERIVED MEASURES AND CALCULATED MEMBERS
Derived Measures:

Measures calculated from other measures or dimensional attributes
Computed at query time rather than stored in the fact table
Example: Profit (derived from Revenue - Cost)

Calculated Members:
Similar to derived measures but defined within the dimensional structure
Can involve complex calculations and business logic
Example: Year-to-date totals, moving averages

BEST PRACTICES

1. Clearly identify and document the type of each measure (additive, semi-additive, non-additive)
2. Design fact tables with primarily additive measures for optimal performance
3. Use appropriate aggregation methods for semi-additive and non-additive measures
4. Consider pre-calculating complex derived measures for performance reasons
5. Ensure calculated members are well-documented and understood by end-users
6. Regularly validate the accuracy of derived measures and calculated members

+----------------------------+
| Sales_Fact |
+----------------------------+
| Customer_ID (FK) | +------------------------+
Product_ID (FK)	---->	Customer_Dimension
Time_ID (FK)		------------------------
Quantity_Sold (Measure)		Customer_ID (PK)
Sales_Amount (Measure)		Customer_Name
+----------------------------+ +------------------------+
 |
 v
+----------------------------+
| Time_Dimension |
+----------------------------+
| Time_ID (PK) |
| Year |
| Month |
+----------------------------+

7

Explanation: In this diagram, the fact table is at the center with measures like Quantity_Sold and Sales_Amount which
are the metrics being analyzed. The dimension tables (e.g., Customer_Dimension, Time_Dimension) provide context for
those measures.

Speaker notes

FACTS

Types of fact tables:
Transaction fact tables
Periodic snapshot fact tables
Accumulating snapshot fact tables

Granularity of facts
Relationship between facts and dimensions

 Collection of related data items, consisting of measures and
context

8

FACTS IN DATA WAREHOUSING
DEFINITION
Facts are collections of related data items, consisting of measures and context. They represent the core data to be
analyzed in a data warehouse, typically stored in fact tables.

TYPES OF FACT TABLES

1. TRANSACTION FACT TABLES

Description: Represent individual transactions or events
Characteristics:

Finest grain of detail
One row per transaction
Usually the most voluminous

Example: Individual sales transactions, ATM withdrawals
2. PERIODIC SNAPSHOT FACT TABLES

Description: Capture the state of things at regular, predetermined time intervals
Characteristics:

Regular time intervals (e.g., daily, weekly, monthly)
Consistent level of aggregation over time
Good for analyzing trends over time

Example: Monthly account balances, daily inventory levels
3. ACCUMULATING SNAPSHOT FACT TABLES

Speaker notes

Description: Track the progress of a process with a definite beginning and end
Characteristics:

One row per process instance
Updated as the process progresses
Contains multiple date columns for different milestones

Example: Order processing (order date, shipment date, delivery date)

GRANULARITY OF FACTS

Definition: The level of detail represented by each row in a fact table
Importance:

Determines the types of analyses that can be performed
Affects the size and performance of the data warehouse

Best Practice: Choose the lowest level of granularity that is practical and meaningful for the business
Example: Individual product sales vs. daily total sales by store

RELATIONSHIP BETWEEN FACTS AND DIMENSIONS
Structure: Facts are typically surrounded by dimensions in a star or snowflake schema
Connections:

Facts contain foreign keys that link to dimension tables
These links allow for rich, multi-dimensional analysis

Dimensionality: The number of dimensions associated with a fact table determines its dimensionality
Analysis: Dimensions provide the context for analyzing the measures in the fact table

BEST PRACTICES

1. Choose the appropriate fact table type based on business requirements and analysis needs
2. Determine the optimal granularity that balances detail with performance
3. Ensure consistency in the level of granularity across related fact tables
4. Design fact tables to be as narrow as possible, including only necessary columns
5. Use surrogate keys for dimension references to improve performance and handle changing dimension data
6. Document the meaning and context of each fact table thoroughly

THE CUBE CONCEPT

Visualizing multi-dimensional data
Basic operations:

Slicing
Dicing
Pivoting

 Multi-dimensional representation of data

9

THE CUBE CONCEPT IN DATA WAREHOUSING
DEFINITION
The cube concept refers to a multi-dimensional representation of data in a data warehouse. It allows for the visualization
and analysis of data across multiple dimensions simultaneously.

VISUALIZING MULTI-DIMENSIONAL DATA
Three-dimensional cube: Often used to represent data with three dimensions (e.g., Product, Time, Location)
Hypercube: Represents data with more than three dimensions
Cells: Intersection points in the cube, containing measure values
Edges: Represent dimensions (e.g., time, product, location)

BASIC OPERATIONS

1. SLICING

Definition: Extracting a specific slice of the data cube by fixing one dimension
Example: Analyzing sales for a specific month across all products and locations
Benefit: Allows for focused analysis on a particular aspect of the data

2. DICING

Definition: Extracting a sub-cube by fixing two or more dimensions
Example: Analyzing sales for a specific product category in a particular region for the last quarter
Benefit: Enables more granular analysis by focusing on multiple specific aspects simultaneously

3. PIVOTING

Speaker notes

Definition: Rotating the cube to view data from different perspectives
Also known as: Rotation
Example: Changing the view from "Product by Region" to "Region by Product"
Benefit: Provides different analytical perspectives on the same dataset

ADDITIONAL IMPORTANT CONCEPTS

DRILL-DOWN AND ROLL-UP

Drill-down: Moving from a higher level of aggregation to a more detailed level
Roll-up: Aggregating data to a higher level in a dimension hierarchy
Example: Drilling down from yearly sales to monthly sales, or rolling up from city-level data to country-level data

AGGREGATION

Process of calculating summary values across dimensions
Types include sum, average, count, min, max, etc.
Essential for providing different levels of data granularity

BENEFITS OF THE CUBE CONCEPT
1. Enables intuitive representation of complex, multi-dimensional data
2. Facilitates quick and flexible data analysis
3. Supports various levels of data aggregation and detail
4. Allows for easy identification of trends, patterns, and anomalies
5. Enhances decision-making by providing multi-faceted views of business data

CHALLENGES AND CONSIDERATIONS

Data sparsity: Many cells in a cube may be empty, leading to storage inefficiencies
Performance: Large cubes with many dimensions can be computationally intensive
Design complexity: Deciding on the right dimensions and hierarchies requires careful planning
Data updates: Updating pre-aggregated data in cubes can be complex and time-consuming

Cube slicing

10

Cube dicing

11

BENEFITS OF MULTI-DIMENSIONAL
MODEL

Intuitive data representation
Efficient query performance
Flexibility in analysis

12

MULTI-DIMENSIONAL VS. RELATIONAL
MODEL

Aspect Relational Model Multi-dimensional Model

Primary Purpose Operational processing (OLTP) Analytical processing (OLAP)

Data Structure Normalized tables Denormalized, star or snowflake schema

Optimization For data insertion and updates For complex queries and aggregations

Query Complexity Simple, predefined queries Complex, ad-hoc queries

Data Redundancy Minimized Accepted for performance

Time Dimension Usually represents current state Historical data is a key aspect

Data Volume Typically smaller Usually much larger

13

IN-CLASS EXERCISE
A retail store chain tracks its sales data to analyze business performance. The store collects the following

information for each sale:

Product Information:
Product name,
Product category
(e.g., electronics,
clothing), Price
Customer
Information:
Customer ID,
Customer age group
(e.g., 18-25, 26-35),
Gender

Store Information:
Store location (city),
Store region (e.g.,
North, South)
Sales Information:
Sale date, Quantity
sold, Total sales
amount (Quantity
sold * Price)

 Task:

14

DATA WAREHOUSE
ARCHITECTURE AND

COMPONENTS

15

SOURCE SYSTEMS
Types of source systems:

OLTP databases
Flat files
External data sources

Challenges in data extraction
Data quality issues
Heterogeneous data formats
Data volume and extraction frequency

16

Source systems are the origin of data that flows into the data warehouse. Understanding these systems is crucial for
effective data extraction and integration.

TYPES OF SOURCE SYSTEMS:

OLTP databases: Operational databases that handle day-to-day transactions. These are typically normalized and
optimized for quick updates and insertions.
Flat files: Text files containing structured data, often used for data exchange between systems or for legacy data
storage.
External data sources: Third-party data providers, web services, APIs, or other external systems that provide
valuable data for analysis.

Example: A retail company might have OLTP databases for point-of-sale transactions, flat files for historical sales data,
and external data sources for market trends and weather information.
CHALLENGES IN DATA EXTRACTION:

Data quality issues: Inconsistent formats, missing values, or incorrect data in source systems.
Heterogeneous data formats: Different systems may use various data types, encodings, or structures.
Data volume and extraction frequency: Balancing the need for up-to-date data with system performance and
network constraints.

Speaker notes

ETL PROCESS
Extract, Transform, Load

Extract: Collect data from source systems
(databases, flat files, etc.)
Transform: Cleanse, filter, aggregate, and
standardize the data
Load: Move transformed data into the data
warehouse or data marts
Challenges in ETL: Handling large volumes,
ensuring data consistency

17

ETL Definition: ETL stands for Extract, Transform, Load. It is a crucial process in data warehousing that involves
extracting data from various source systems, transforming it to fit the data warehouse's schema, and loading it into the
target data warehouse.

1. EXTRACT
The first step in the ETL process is to extract data from various source systems.

KEY POINTS:

Collect data from diverse source systems such as databases, flat files, APIs, and legacy systems.
Determine the appropriate extraction method based on the source system and requirements.
Handle different data formats and structures during extraction.

EXTRACTION METHODS:

Full Extraction: Extracting all data from the source system each time.
Incremental Extraction: Extracting only new or modified data since the last extraction.
Change Data Capture (CDC): Identifying and capturing changes in the source data in real-time or near real-time.

Example: A retail company extracts daily sales data from its point-of-sale systems, customer information from its CRM
database, and inventory data from its supply chain management system.

2. TRANSFORM
The transformation phase involves converting the extracted data into a format suitable for the data warehouse.

KEY TRANSFORMATION TASKS:

Speaker notes

Cleansing: Correcting or removing incorrect, incomplete, or improperly formatted data.
Filtering: Selecting only the relevant data for the data warehouse.
Aggregating: Summarizing data to reduce volume and improve query performance.
Standardizing: Ensuring consistency in data formats, units, and representations across different sources.

COMMON TRANSFORMATIONS:

Converting data types (e.g., string to date)
Splitting or combining fields
Encoding categorical data
Calculating derived values
Merging data from multiple sources

Example: Customer addresses from different systems are standardized to a common format, sales figures are
converted to a single currency, and daily sales data is aggregated to weekly and monthly summaries.

3. LOAD
The final step involves loading the transformed data into the target data warehouse or data marts.

LOADING STRATEGIES:

Initial Load: Populating the data warehouse for the first time with historical data.
Incremental Load: Regularly updating the data warehouse with new or changed data.
Full Refresh: Completely replacing existing data in the warehouse with a new dataset.

LOADING CONSIDERATIONS:

Ensuring data integrity and consistency during the load process
Managing the impact on query performance during loading
Handling slowly changing dimensions
Maintaining referential integrity in the data warehouse

Example: Transformed sales data is loaded into fact tables, while updated customer information is merged into the
customer dimension table, handling any changes in customer attributes over time.

CHALLENGES IN ETL
ETL processes face several challenges, particularly when dealing with large-scale data warehouses.

1. HANDLING LARGE VOLUMES OF DATA:

Processing and moving massive amounts of data efficiently
Optimizing ETL jobs for performance
Managing network bandwidth and storage requirements

2. ENSURING DATA CONSISTENCY:

Maintaining data quality across diverse source systems
Reconciling conflicting data from different sources
Handling data type mismatches and inconsistencies

3. OTHER COMMON CHALLENGES:

Meeting tight ETL windows and service level agreements (SLAs)
Dealing with changing source systems and data structures
Scaling ETL processes as data volumes grow
Monitoring and error handling in complex ETL workflows

BEST PRACTICES IN ETL

Design for scalability and performance from the start
Implement robust error handling and logging mechanisms
Use staging areas to minimize impact on source and target systems
Automate ETL processes and schedule them appropriately
Continuously monitor and optimize ETL jobs
Maintain clear documentation of ETL processes and data lineage

DATA STAGING AREA
Purpose and functions

Temporary storage for extracted data
Area for data transformation and cleansing
Improves overall data warehouse
performance

ETL processes in staging area:
Data extraction
Data cleansing
Data transformation

18

Purpose: The data staging area is a temporary workspace where raw data from various source systems is
extracted, transformed, and prepared for loading into the data warehouse.
Key Functions:

Data extraction from different sources (e.g., OLTP systems, flat files, external systems).
Data cleansing to remove inconsistencies, duplicates, and errors.
Data transformation, including filtering, aggregating, and standardizing the data to make it suitable for
analysis.
This is where the ETL (Extract, Transform, Load) process begins: raw data is brought in, cleaned, and
transformed before being loaded into the next layer.

Temporary Nature: The data staging area usually holds data temporarily and may discard it once the data has
been successfully transformed and loaded.

Speaker notes

INTEGRATION LAYER
Purpose: Consolidate and standardize data from
different sources
Data harmonization and application of business
rules
Prepares data for loading into the core data
warehouse

19

Purpose: The integration layer consolidates and integrates data from different sources to create a unified,
consistent dataset that is ready for analysis.
Key Functions:

Data consolidation: Data from various sources is combined into a single, consistent view, eliminating
redundancy and ensuring consistency across different data sources.
Data harmonization: Different formats, units of measurement, or terminology are standardized to create
a cohesive dataset. For example, customer data from multiple sources might be merged to ensure each
customer has a unique identifier across all systems.
Business logic application: Often, business rules are applied in this layer to ensure the data is
structured according to the organization's requirements.

Permanent Nature: The integration layer typically stores the transformed and cleansed data that is then used
for querying and analysis. Data in this layer is integrated and consistent, but not yet fully optimized for end-user
querying (that would happen in the presentation layer).

Speaker notes

DATA STAGING AREA VS. INTEGRATION
LAYER

Aspect Data Staging Area Integration Layer

Purpose Temporary workspace for extracting and
transforming raw data

Consolidates and integrates data for
unified, consistent datasets

Functions Extraction, cleansing, transformation,
loading

Data harmonization, applying business
logic, consolidation

Nature Temporary data storage Permanent, integrated data storage

Processing
Stage

Early stage of ETL process (before
transformation is complete)

Post-transformation, ready for querying or
further loading

Persistence Short-term; data is usually discarded after
loading

Long-term; integrated data is stored for
querying

20

CORE DATA WAREHOUSE
Central repository characteristics

Integrated data from multiple sources
Historical and current data
Optimized for querying and analysis

Data organization strategies:
Normalized approach: Reduces data
redundancy, suitable for large-scale enterprise
data warehouses
Dimensional approach: Optimized for query
performance, suitable for specific business
areas 21

The core data warehouse is the central repository where integrated, historical data is stored for analysis and reporting.

CENTRAL REPOSITORY CHARACTERISTICS:

Integrated data from multiple sources: Provides a single version of truth for the entire organization.
Historical and current data: Enables trend analysis and comparisons over time.
Optimized for querying and analysis: Designed for complex queries and large data volumes, often using
columnar storage or other performance-enhancing techniques.

DATA ORGANIZATION STRATEGIES:

Normalized approach: Reduces data redundancy, suitable for large-scale enterprise data warehouses. Uses
normal forms to organize data, which can be beneficial for data integrity but may require more complex queries.
Dimensional approach: Optimized for query performance, suitable for specific business areas. Uses fact and
dimension tables in a star or snowflake schema, which simplifies queries and improves query performance.

Example: A healthcare data warehouse might use a normalized approach for patient records to ensure data integrity,
while using a dimensional approach for analyzing treatment outcomes across different demographics and time periods.

Speaker notes

DATA MARTS

Types:
Dependent data marts: Derived from the central data
warehouse
Independent data marts: Built directly from source
systems

Relationship with the core data warehouse
Can serve as a layer between the core warehouse and
end-users
Provides tailored data for specific departments or
functions

 Subset of data warehouse focused on specific business area

22

A data mart is a subset of the data warehouse focused on a specific business area or department.

TYPES:

Dependent data marts: Derived from the central data warehouse, ensuring consistency with other data marts
and the core warehouse.
Independent data marts: Built directly from source systems, often used when a full data warehouse is not
feasible or when quick results are needed for a specific business area.

RELATIONSHIP WITH THE CORE DATA WAREHOUSE:

Layer between core warehouse and end-users: Provides tailored, often aggregated data for specific
departments or functions, improving query performance and usability.
Tailored data for specific needs: Allows for customized data structures and aggregations that suit particular
business requirements.

Example: A large retailer might have separate data marts for inventory management, customer relationship
management, and financial analysis, each derived from the central data warehouse but optimized for its specific use
case.

Speaker notes

METADATA REPOSITORY
Types of metadata:

Business metadata: Definitions, ownership, and
usage of data
Technical metadata: Data structures, ETL mappings,
and database schemas
Operational metadata: ETL job logs, data lineage,
and usage statistics

Importance of metadata management
Facilitates data governance and compliance
Improves data understanding and usability
Aids in impact analysis and change management

23

The metadata repository stores information about the data warehouse itself, crucial for understanding, managing, and
using the data effectively.

TYPES OF METADATA:

Business metadata: Definitions, ownership, and usage of data. Includes business terms, KPI definitions, and
data lineage from a business perspective.
Technical metadata: Data structures, ETL mappings, and database schemas. Includes information about data
types, table relationships, and transformation rules.
Operational metadata: ETL job logs, data lineage, and usage statistics. Provides information about data
freshness, processing times, and user access patterns.

IMPORTANCE OF METADATA MANAGEMENT:

Facilitates data governance and compliance: Helps in tracking data origins, transformations, and usage,
crucial for regulatory compliance and data privacy.
Improves data understanding and usability: Enables users to understand the meaning and context of data,
improving analysis accuracy.
Aids in impact analysis and change management: Allows administrators to understand dependencies and
potential impacts of changes to the data warehouse structure.

Example: In a financial data warehouse, the metadata repository might contain definitions of financial terms, the
formulas used to calculate various ratios, the sources of different financial data points, and logs of when and how often
specific reports are accessed.

Speaker notes

FRONT-END APPLICATIONS
Reporting tools
OLAP tools
Data mining applications
Dashboards and scorecards

24

Front-end applications are the tools and interfaces that users interact with to access and analyze data from the
warehouse.

Reporting tools: For creating standard and ad-hoc reports. These range from simple tabular reports to complex,
interactive dashboards.
OLAP tools: For multi-dimensional analysis and data exploration. Allow users to slice and dice data, drill down
into details, or roll up to higher levels of aggregation.
Data mining applications: For discovering patterns and insights in data. Use advanced statistical and machine
learning techniques to uncover hidden trends and relationships.
Dashboards and scorecards: For visualizing key performance indicators. Provide at-a-glance views of important
metrics and trends, often with interactive elements.

Example: A marketing team might use a dashboard to track campaign performance, an OLAP tool to analyze customer
segments, and a data mining application to predict customer churn based on historical data.

Speaker notes

ARCHITECTURAL APPROACHES
Inmon's approach (top-down):

Enterprise-wide data warehouse: Centralized repository
for all organizational data
Normalized data model: Reduces data redundancy and
ensures data integrity

Kimball's approach (bottom-up):
Series of integrated data marts: Built incrementally
based on business priorities
Dimensional model: Optimized for query performance
and ease of use

Hybrid approaches

25

Different architectural approaches to data warehousing have evolved to meet various business needs and constraints.

INMON'S APPROACH (TOP-DOWN):

Enterprise-wide data warehouse: Centralized repository for all organizational data, providing a single source of
truth.
Normalized data model: Reduces data redundancy and ensures data integrity, but may require more complex
queries for analysis.

KIMBALL'S APPROACH (BOTTOM-UP):

Series of integrated data marts: Built incrementally based on business priorities, allowing for faster time to
value.
Dimensional model: Optimized for query performance and ease of use, using star or snowflake schemas.

HYBRID APPROACHES:

Combines elements of both Inmon and Kimball approaches: May use a normalized core with dimensional
data marts, or start with data marts and gradually build towards an enterprise warehouse.
Adapts to specific organizational needs and constraints: Allows for flexibility in implementation while striving
for long-term integration and consistency.

Speaker notes

Data Warehouse Architecture

26

MULTI-DIMENSIONAL
QUERIES: OLAP

OPERATIONS

27

INTRODUCTION TO OLAP

 Purpose: Enable complex analytical queries and
data exploration
OLAP vs. OLTP:

Query complexity
Data volume
User types

 Online Analytical Processing

28

OLAP (Online Analytical Processing) enables users to perform complex, multi-dimensional queries for analytical
purposes. While OLTP systems focus on processing day-to-day transactions, OLAP systems are designed for querying
and reporting on large datasets. Key differences include:

Query complexity: OLAP queries often involve aggregations and multidimensional analysis, whereas OLTP
queries are simpler and transactional.
Data volume: OLAP systems handle large datasets, often historical, while OLTP works with smaller, real-time
transactional data.
User types: OLAP is typically used by analysts for decision-making, while OLTP is used by clerks or operational
staff.

Example: A financial analyst might use OLAP to analyze sales data by product, region, and time, identifying trends and
patterns across multiple dimensions.

Speaker notes

BASIC OLAP OPERATIONS
Roll-up (drill-up): Aggregating data to a higher
level
Drill-down: Navigating to more detailed data
Slice: Selecting a specific dimension value
Dice: Selecting values from multiple dimensions
Pivot (rotate): Changing the dimensional
orientation

29

OLAP operations allow users to explore and analyze data from different perspectives:

Roll-up (drill-up): Aggregates data to a higher level (e.g., viewing total sales by region instead of by city).
Drill-down: Enables users to view more detailed data (e.g., drilling down from sales by region to sales by
individual stores).
Slice: Selects a single dimension value, such as filtering data to only show sales for 2023.
Dice: Selects multiple dimensions (e.g., viewing sales for 2023 and Region A).
Pivot (rotate): Changes the orientation of the data to look at it from a different perspective (e.g., swapping rows
and columns).

Example: A retail company might drill down from total sales to see product-level sales, then slice the data by year or
region.

Speaker notes

Roll-up (from javatpoint.com)

30

Drill-down (from javatpoint.com)

31

ADVANCED OLAP CONCEPTS
Drill-across: Combining data from different fact
tables
Drill-through: Accessing detailed source data
Ranking and windowing functions

32

Advanced OLAP concepts provide even greater flexibility for data analysis:

Drill-across: Combines data from different fact tables (e.g., sales and inventory data).
Drill-through: Allows access to detailed source data, often at the transaction level (e.g., viewing the original sales
transaction records).
Ranking and windowing functions: These functions help with ordering data, calculating running totals, and
other advanced analyses.

Example: An analyst might drill across to compare sales data with inventory levels or use ranking to find the top-selling
products.

Speaker notes

OLAP SCHEMAS
ROLAP (Relational OLAP): Using relational
databases
MOLAP (Multidimensional OLAP): Using
specialized multidimensional databases
HOLAP (Hybrid OLAP): Combining ROLAP and
MOLAP

33

There are three main OLAP architectures, each with its strengths and weaknesses:

ROLAP (Relational OLAP): Uses a relational database to store and query data. It can handle large volumes but
may suffer from slower performance due to reliance on SQL.
MOLAP (Multidimensional OLAP): Stores data in a multidimensional cube, enabling faster query performance
but requiring more storage space.
HOLAP (Hybrid OLAP): Combines ROLAP and MOLAP, using relational databases for detailed data and cubes
for aggregated data.

Example: A company might use ROLAP for large historical data storage and MOLAP for fast analysis of key metrics.

Speaker notes

QUERYING MULTI-DIMENSIONAL DATA
MDX (Multidimensional Expressions)
SELECTSELECT
 { { [[MeasuresMeasures]]..[[Store SalesStore Sales]] } } ONON COLUMNSCOLUMNS,,
 { { [[DateDate]]..[[20022002]],, [[DateDate]]..[[20032003]] } } ONON ROWSROWS
FROMFROM Sales Sales
WHEREWHERE (([[StoreStore]]..[[USAUSA]]..[[CACA]]))

34

MDX (Multidimensional Expressions) is a language designed specifically for querying OLAP cubes, offering greater
flexibility for multidimensional data:

MDX: Used for querying and manipulating OLAP data, particularly in multidimensional databases.
Comparison with SQL: While SQL is designed for two-dimensional relational databases, MDX is optimized for
querying multi-dimensional data.

Example: An MDX query might return sales data sliced by year and product category, offering more flexibility than an
equivalent SQL query.
In this example, the query defines the following result set information

The SELECT clause sets the query axes as the Store Sales member of the Measures dimension, and the 2002
and 2003 members of the Date dimension.
The FROM clause indicates that the data source is the Sales cube.
The WHERE clause defines the "slicer axis" as the California member of the Store dimension.

Speaker notes

RELATIONAL
SCHEMAS FOR DATA

WAREHOUSES

35

STAR SCHEMA

Structure: Centralized fact table with foreign keys
to dimension tables
Benefits:

Simplified queries
Improved query performance
Easier to understand and navigate

 Fact table surrounded by dimension tables

36

In data warehousing, the choice of relational schema is crucial as it impacts query performance, data integrity, and
overall maintainability. The three main types of schemas used in data warehouses are Star Schema, Snowflake
Schema, and Fact Constellation Schema.

1. STAR SCHEMA

A star schema consists of a central fact table surrounded by dimension tables, resembling a star-like structure.
STRUCTURE:

Centralized fact table containing business metrics (facts)
Dimension tables connected to the fact table via foreign keys
Dimension tables are denormalized (not normalized)

BENEFITS:

Simplified queries: Fewer joins required due to denormalized dimension tables
Improved query performance: Faster data retrieval, especially for aggregations
Easier to understand and navigate: Intuitive structure for business users

Example: In a retail data warehouse, a Sales fact table might be surrounded by dimension tables like Date, Product,
Store, and Customer.

Speaker notes

Star schema
37

SNOWFLAKE SCHEMA

Structure: Dimension tables are normalized into
multiple related tables
Comparison with star schema:

Reduced data redundancy
More complex queries
Potentially slower query performance

When to use snowflake schema
When data integrity is a top priority
When storage space is a concern

 Extension of star schema with normalized dimensions

38

2. SNOWFLAKE SCHEMA

A snowflake schema is an extension of the star schema where dimension tables are normalized into multiple related
tables.
STRUCTURE:

Central fact table, similar to star schema
Dimension tables are normalized, forming a branching structure

COMPARISON WITH STAR SCHEMA:

Reduced data redundancy: Normalization eliminates duplicate data
More complex queries: Requires additional joins due to normalized dimensions
Potentially slower query performance: More joins can impact query speed

WHEN TO USE SNOWFLAKE SCHEMA:

Data integrity is a top priority: Normalization helps maintain data consistency
Storage space is a concern: Reduces storage requirements through normalization

Example: In a product dimension, attributes like category and subcategory might be split into separate tables, branching
out from the main product table.

Speaker notes

Snowflake schema
39

FACT CONSTELLATION SCHEMA

Structure: Multiple star schemas with shared
dimensions
Use cases and challenges

Complex business environments
Maintaining consistency across shared
dimensions
Increased complexity in query design

 Multiple fact tables sharing dimension tables

40

3. FACT CONSTELLATION SCHEMA

A fact constellation schema consists of multiple fact tables sharing dimension tables, forming a more complex structure.
STRUCTURE:

Multiple fact tables, each representing different business processes
Shared dimension tables between fact tables

USE CASES AND CHALLENGES:

Use cases: Complex business environments with multiple related business processes
Challenges:

Maintaining consistency across shared dimensions
Increased complexity in query design and optimization
Potentially more difficult for end-users to navigate

Example: A retail data warehouse might have separate fact tables for Sales and Inventory, both sharing dimensions like
Product and Store.

Key Differences

Star Schema: Centralized fact table with denormalized dimensions
Snowflake Schema: Normalized dimensions branching out from the fact table
Fact Constellation Schema: Multiple fact tables sharing dimensions Normalization:

Snowflake schema is more normalized than galaxy schema. Complexity: Snowflake schema is generally more complex
to design and implement. Performance: The performance of both schemas depends on the specific query patterns and
data volumes. In some cases, snowflake schema can offer better performance for queries involving multiple levels of

Speaker notes

dimension hierarchies. When to Use Which Schema
Galaxy Schema:

Simple data models with limited dimension hierarchies.
Performance is critical for queries involving a single fact table and multiple dimensions.

Snowflake Schema:
Complex data models with multiple levels of dimension hierarchies.
Data normalization is important.
Performance is critical for queries involving multiple levels of dimension hierarchies.

CHOOSING THE RIGHT SCHEMA
Factors to consider:

Query performance requirements
Data volume
Maintenance complexity

Performance implications
Maintainability and flexibility

41

CHOOSING THE RIGHT SCHEMA
Selecting the appropriate schema depends on various factors and requires careful consideration of trade-offs.

FACTORS TO CONSIDER:

Query performance requirements: How critical is query speed for your use case?
Data volume: How much data will the warehouse store and process?
Maintenance complexity: How often will the schema need updates, and who will maintain it?

PERFORMANCE IMPLICATIONS:

Star schemas generally offer the best query performance due to fewer joins
Snowflake schemas may have slower queries but can be more space-efficient
Fact constellation schemas can be optimized for specific queries but may be complex to manage

MAINTAINABILITY AND FLEXIBILITY:

Star schemas are easier to maintain and modify
Snowflake schemas offer better data integrity but are more complex to update
Fact constellation schemas provide flexibility for complex business scenarios but require careful management

Speaker notes

DENORMALIZATION IN DW SCHEMAS
 Purpose: Improve query performance

Benefits:
Reduced number of joins
Faster query execution

Potential drawbacks:
Data redundancy
Increased storage requirements
More complex data updates

42

DENORMALIZATION IN DW SCHEMAS
Denormalization is a technique often used in data warehouse design to improve query performance at the cost of some
data redundancy.

PURPOSE:

Improve query performance by reducing the need for joins
BENEFITS:

Reduced number of joins: Fewer tables to connect in queries
Faster query execution: Simpler queries often translate to quicker results

POTENTIAL DRAWBACKS:

Data redundancy: Same information may be stored in multiple places
Increased storage requirements: Redundant data consumes more space
More complex data updates: Changes must be propagated to all instances of redundant data

Example: In a star schema, a Product dimension might include category information directly, even though this creates
some redundancy, to avoid an additional join to a separate Category table.

Speaker notes

DIMENSIONAL
MODELING

43

INTRODUCTION TO DIMENSIONAL
MODELING

 Purpose: Optimize database structures for
analytical queries
Kimball's approach to dimensional modeling

 Technique for designing logical data models for data
warehouses

44

Dimensional Modeling is a technique for designing logical data models for data warehouses, optimizing database
structures for analytical queries.

Purpose: To create a database structure that is intuitive for business users and optimized for query performance
in data warehouses and business intelligence systems.
Kimball's approach: Focuses on creating a user-centric, bottom-up design that starts with the most critical
business processes and expands over time.

Speaker notes

STEPS IN DIMENSIONAL MODELING
1. Choose the business process
2. Declare the grain (level of detail)
3. Identify the dimensions
4. Identify the facts

45

1. Choose the business process: Identify the specific business activity to model (e.g., sales transactions,
customer support tickets).

2. Declare the grain: Determine the level of detail for the fact table (e.g., individual sales transactions, daily sales
summaries).

3. Identify the dimensions: Determine the contextual attributes that describe the facts (e.g., date, product,
customer, store).

4. Identify the facts: Define the numerical measures that will be analyzed (e.g., quantity sold, sales amount, profit).

Speaker notes

FACT TABLES
Types of fact tables:

Transaction fact tables
Periodic snapshot fact tables
Accumulating snapshot fact tables

Selecting appropriate measures
Handling multiple grains in a single fact table

46

TYPES OF FACT TABLES:

Transaction fact tables: Represent individual business events (e.g., individual sales transactions).
Periodic snapshot fact tables: Capture the state of things at regular time intervals (e.g., daily inventory levels).
Accumulating snapshot fact tables: Track the progress of a process with a definite beginning and end (e.g.,
order fulfillment process).

SELECTING APPROPRIATE MEASURES:

Choose measures that are relevant to the business process and align with analytical needs.
Ensure measures are consistent with the declared grain.
Consider both additive and non-additive measures.

HANDLING MULTIPLE GRAINS IN A SINGLE FACT TABLE:

Use the most granular level that makes sense for the business process.
Consider creating separate fact tables for different grains if necessary.
Use aggregation tables or materialized views for commonly requested summary levels.

Speaker notes

DIMENSION TABLES
Role of dimension tables: Provide context to facts
Slowly Changing Dimensions (SCD):

Type 1: Overwrite
Type 2: Add new row
Type 3: Add new attribute

Handling hierarchies in dimensions

47

Role of dimension tables: Provide context to facts, serving as the primary source of query constraints and report
labels.

SLOWLY CHANGING DIMENSIONS (SCD):

Type 1 (Overwrite): Update the dimension table, overwriting the old value with the new one. No history is kept.
Type 2 (Add new row): Add a new row with the changed data, keeping historical records. Requires additional
columns like effective date and current flag.
Type 3 (Add new attribute): Add a new column to track changes, typically for a specific attribute where limited
history is needed.

HANDLING HIERARCHIES IN DIMENSIONS:

Represent natural hierarchies within a single dimension table (e.g., Product Category > Product Subcategory >
Product).
Use separate dimension tables for complex or variable hierarchies.
Consider using bridge tables for ragged or unbalanced hierarchies.

Speaker notes

HANDLING COMPLEX SCENARIOS
Many-to-many relationships:

Bridge tables
Factless fact tables

Handling ragged hierarchies:
Bridge tables
Nested sets model

Dealing with sparse facts:
Separate fact tables
Bitmap indexing

48

MANY-TO-MANY RELATIONSHIPS:

Bridge tables: Use to connect facts to multiple dimension instances (e.g., products in a sales order).
Factless fact tables: Represent relationships or events without measures (e.g., student course enrollments).

HANDLING RAGGED HIERARCHIES:

Bridge tables: Use to represent variable-depth hierarchies.
Nested sets model: An alternative approach for efficient querying of hierarchical data.

DEALING WITH SPARSE FACTS:

Separate fact tables: Create different fact tables for dense and sparse facts.
Bitmap indexing: Use bitmap indexes to efficiently handle sparse data in large fact tables.

Speaker notes

BEST PRACTICES IN DIMENSIONAL
MODELING

Choosing the right grain:
Balance between detail
and performance
Consider business
requirements

Handling multi-valued
dimensions:

Bridge tables
Flattening the structure

49

CHOOSING THE RIGHT GRAIN:

Balance between detail and performance: Choose a grain that provides necessary detail without overwhelming
the system.
Consider business requirements: Ensure the chosen grain supports all required types of analysis.

HANDLING MULTI-VALUED DIMENSIONS:

Bridge tables: Use for many-to-many relationships between facts and dimensions.
Flattening the structure: Denormalize multi-valued attributes into the fact table when appropriate.

ENSURING CONSISTENCY ACROSS THE ENTERPRISE:

Conformed dimensions: Use standardized dimensions across different fact tables and data marts.
Standard naming conventions: Implement consistent naming for tables, columns, and attributes.

PERFORMANCE CONSIDERATIONS:

Appropriate indexing: Use indexes on commonly queried columns in both fact and dimension tables.
Partitioning strategies: Implement table partitioning for large fact tables to improve query performance.

Speaker notes

CONCLUSION AND
PREVIEW

50

RECAP OF KEY POINTS
Multi-dimensional model concepts
DW architecture and components
OLAP operations
Relational schemas for DWHs
Dimensional modeling principles

51

Q&A

52

